

Automation

FrameworkBasic

V2.2

Siemens
Digital
Industries

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 2

Legal information
Use of application examples
Application examples illustrate the solution of automation tasks through an interaction of several components in the form of text,

graphics and/or software modules. The application examples are a free service by Siemens AG and/or a subsidiary of Siemens AG

("Siemens"). They are non-binding and make no claim to completeness or functionality regarding configuration and equipment. The

application examples merely offer help with typical tasks; they do not constitute customer-specific solutions. The application examples

are not subject to standard tests and quality inspections of a chargeable product and may contain functional and performance

defects or other faults and security vulnerabilities. You are responsible for the proper and safe operation of the products in

accordance with all applicable regulations, including checking and customizing the application example for your system, and

ensuring that only trained personnel use it in a way that prevents property damage or injury to persons. You are solely

responsible for any productive use.

Siemens grants you the non-exclusive, non-sublicensable and non-transferable right to have the application examples used by technically

trained personnel. Any change to the application examples is your responsibility. Sharing the application examples with third parties or

copying the application examples or excerpts thereof is permitted only in combination with your own products. Any further use of the

application examples is explicitly not permitted and further rights are not granted. You are not allowed to use application examples in

any other way, including, without limitation, for any direct or indirect training or enhancements of AI models.

Disclaimer of liability
Siemens shall not assume any liability, for any legal reason whatsoever, including, without limitation, liability for the usability,

availability, completeness and freedom from defects of the application examples as well as for related information, configuration and

performance data and any damage caused thereby. This shall not apply in cases of mandatory liability, for example under the German

Product Liability Act, or in cases of intent, gross negligence, or culpable loss of life, bodily injury or damage to health, non-compliance

with a guarantee, fraudulent non-disclosure of a defect, or culpable breach of material contractual obligations. Claims for damages

arising from a breach of material contractual obligations shall however be limited to the foreseeable damage typical of the type of

agreement, unless liability arises from intent or gross negligence or is based on loss of life, bodily injury or damage to health. The

foregoing provisions do not imply any change in the burden of proof to your detriment. You shall indemnify Siemens against existing or

future claims of third parties in this connection except where Siemens is mandatorily liable.

By using the application examples you acknowledge that Siemens cannot be held liable for any damage beyond the liability provisions

described.

Other information
Siemens reserves the right to make changes to the application examples at any time without notice and to terminate your use of the

application examples at any time. In case of discrepancies between the suggestions in the application examples and other Siemens

publications such as catalogs, the content of the other documentation shall have precedence.

The Siemens terms of use (https://www.siemens.com/global/en/general/terms-of-use.html) shall also apply.

Cybersecurity information
Siemens provides products and solutions with industrial cybersecurity functions that support the secure operation of plants, systems,

machines and networks.

In order to protect plants, systems, machines and networks against cyber threats, it is necessary to implement – and continuously

maintain – a holistic, state-of-the-art industrial cybersecurity concept. Siemens’ products and solutions constitute one element of such a

concept.

Customers are responsible for preventing unauthorized access to their plants, systems, machines and networks. Such systems, machines

and components should only be connected to an enterprise network or the internet if and to the extent such a connection is necessary

and only when appropriate security measures (e.g. firewalls and/or network segmentation) are in place.

For additional information on industrial cybersecurity measures that may be implemented, please visit www.siemens.com/cybersecurity-

industry.

Siemens’ products and solutions undergo continuous development to make them more secure. Siemens strongly recommends that
product updates are applied as soon as they are available and that the latest product versions are used. Use of product versions that are

no longer supported, and failure to apply the latest updates may increase customer’s exposure to cyber threats.
To stay informed about product updates, subscribe to the Siemens Industrial Cybersecurity RSS Feed under

https://www.siemens.com/cert.

https://www.siemens.com/global/en/general/terms-of-use.html
http://www.siemens.com/cybersecurity-industry
http://www.siemens.com/cybersecurity-industry
https://www.siemens.com/cert

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 3

Table of Contents

1. What’s new ... 7

1.1. New features .. 7

1.2. Change log ... 7

2. Introduction .. 8

2.1. Overview ... 8

2.2. Scope of Delivery .. 10

2.3. Used Libraries ... 11

2.4. Hardware and Software Requirements ... 12

2.5. User-defined documentation - Online Help .. 13

2.5.1. Directories for user-defined documentation ... 13

2.5.2. Code2Docu .. 14

2.6. Programming conventions .. 15

3. AF Guidelines .. 18

4. Library handling and updates .. 19

4.1. The library concept ... 19

4.2. How to fix library inconsistencies .. 19

4.3. How to use a provided library .. 22

4.4. How to update the project with Global Libraries ... 25

4.5. How to update Master copies .. 28

5. Hardware configuration .. 30

5.1. PROFINET IO with RT / IRT configuration ... 30

5.2. PROFINET Topology .. 31

5.3. Time synchronization and time settings ... 32

6. PLC Software Architecture ... 35

6.1. Overview ... 35

6.2. ISA-88 design ... 35

6.3. Unit State Machine ... 39

6.4. Program structure... 44

6.5. Program Folders ... 48

6.5.1. Overview ... 48

6.5.2. Machine application structure ... 48

6.5.3. Content of program structure.. 51

6.6. Startup and cyclic program execution .. 52

6.7. Data flow ... 54

6.8. HMI interface ... 57

Table of contents

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 4

6.9. TIA Portal implementation .. 61

6.10. Software design principles .. 62

6.10.1. Passing data via block interface vs. direct global access .. 62

6.10.2. PLC – HMI handshake ... 64

7. HMI Software Architecture .. 65

7.1. Screen Layout .. 65

7.2. Header ... 67

7.3. Navigation ... 71

7.3.1. Main navigation ... 71

7.3.2. Sub navigation ... 73

7.3.3. Third navigation ... 74

7.3.4. Unit navigation... 75

7.3.5. General Navigation Commands ... 78

7.3.6. HMI project tree navigation ... 78

7.3.7. Scripts for generic Sub and Third Navigation .. 79

7.4. Machine Overview .. 82

7.5. Operation lock mechanism ... 83

8. Central Functions .. 85

8.1. General .. 85

8.2. Overview ... 86

8.3. Parameter .. 87

8.4. Manual Operation Lines .. 88

8.4.1. Main configuration concepts ... 88

8.4.2. How to implement Manual Operation Lines ... 95

8.4.3. How to use Json files Add-In.. 101

8.5. Messages ... 103

8.5.1. Alarms ... 103

8.6. Diagnostics .. 104

8.6.1. System diagnostics ... 104

8.6.2. PROFINET diagnostics ... 105

8.6.3. Interface Signals ... 106

8.6.3.1. ... Overview

.. 106

8.6.3.2. .. Architecture

.. 107

8.6.3.3. .. Engineering

.. 108

8.6.4. Enhanced Interface ... 110

Table of contents

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 5

8.6.5. Drive Diagnostics .. 114

8.6.5.1. ... Overview

.. 114

8.6.5.2. .. Architecture

.. 116

8.6.5.3. .. Engineering

.. 122

8.7. StateModel .. 130

8.8. Bookmarks ... 131

8.9. Settings ... 132

9. Units ..136

9.1. General Structure ... 136

9.2. Interfaces and blocks .. 138

9.3. HMI Screen .. 142

9.4. Mode and State Manager .. 144

9.5. Stack light .. 147

9.6. How to add a new Unit in the PLC ... 149

9.7. How to resize the HMI .. 152

10. Equipment modules..156

10.1. General structure .. 156

10.2. Interfaces and blocks .. 158

10.3. Hmi Screen .. 162

10.4. Interlink to unit .. 163

10.5. Direct control ... 163

10.6. EM – EM link .. 164

10.7. Job Control... 165

10.8. Sequencers .. 167

10.9. EM-Template / Example .. 169

10.10. EM General .. 171

10.11. EM Demo Implementation – Motion Demo .. 172

10.12. How to add a new EM in the PLC ... 174

10.13. How to add a new EM in the HMI .. 177

11. Control modules ...179

11.1. Interfaces ... 179

11.2. Configuration ... 179

11.3. Operating modes .. 180

12. Motion Control ...182

Table of contents

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 6

12.1. General .. 182

12.2. Motion Folder .. 184

12.3. Data exchange between master axis and slave axis in different equipment modules 185

12.4. Technology objects vs. Sina-blocks .. 187

13. Process diagnostics ..189

13.1. General .. 189

13.2. Prerequisites .. 189

13.2.1. PLC device settings ... 189

13.2.2. Multilingual support ... 190

13.2.3. Common alarm class settings .. 191

13.2.4. System diagnostic settings .. 192

13.2.5. HMI alarm class settings .. 193

13.3. Diagnostic Concept ... 194

13.3.1. Alarm Implementation in the PLC .. 195

13.3.2. Alarm Implementation in the HMI ... 196

13.3.3. Error handling within the LBC Library Blocks .. 200

14. Simulation..202

14.1. Overview ... 202

14.2. PLC and HMI integration of simulation signals .. 203

14.3. PLC simulation with PLCSIM .. 205

15. User Management ..209

15.1. General .. 209

15.2. Demo Implementation .. 211

16. Run the demo ...214

17. Additional information ...216

17.1. Siemens Guidelines .. 216

17.2. TIA Portal Options ... 217

17.3. Software for shared tasks at a glance ... 217

18. Appendix ...219

18.1. Service and Support .. 219

18.2. Links to literature ... 220

18.3. Change documentation .. 221

What’s new

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 7

1. What’s new

1.1. New features

Issue Date Description

2.0 2025/04/04 First version

2.1 2025/05/14 Improvements, see change log

2.2 2025/06/30 • Central Functions:

- Json-Files for manual operation lines will be downloaded to the Unified Panel via

system functions (without an USB-Stick).

- Multilingual support for “interface boolean” screen.
- New “Enhanced interface” allows to show also non-Boolean signals like complex

UDT’s.
• Unit

- Unit detects automatically if SIMIT simulation is connected and running

- Command interfaces extended

- Commands can now be enables/disabled during operation

- Mode and state history extended

• Equipment modules

- User can now configure in which modes and states the EM can be linked or

unlinked from the unit

- The user can now select which command interface is active when an EM is

unlinked from unit.

• HMI

- New navigation concept : It is now much easier to add new units and equipment

modules.

New popup for special functions: It’s now possible to clearly define what the special function
should do for the selected units.

Table 1-1: New features

1.2. Change log

See Chapter Change Documentation

Introduction

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 8

2. Introduction

2.1. Overview

Figure 2-1: Siemens Automation Framework

A core offering of the Siemens Automation Framework (in following named as AFBasic) is a comprehensive collection of TIA

Portal libraries, application examples, HW configurations, and good programming practices in a consolidated,

preconfigured TIA Portal project. It offers basic functionality to develop a generic automation application. It comes with a

fully configured operator panel which contains main navigation and operating functions. On this basis, the user can easily

build and extend his own project modularly using additional PLC and HMI objects from the library.

The project introduces but does not dictate a best practice for intuitive TIA Portal project structuring and provides

application examples for PLC, Motion and HMI programming ready to use.

This document describes the content and structure of the TIA Portal project Automation FrameworkBasic and its libraries.

The user is free to modify the project or start over with an empty project to avoid unused code in his application.

Key Features

• Modularized PLC and HMI TIA Portal project conform to the physical modell according to ISA-88

• User-friendly implementation of OMAC PackML compliant mode and state manager

• Pre-configured operator panel and guidance where and how to extend the configuration

• Introduction on easy integration and handling of libraries and updates

• Various TIA Portal libraries with application solutions (examples)

• Manual operations with HMI templates for example to execute jog operations

Introduction

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 9

Goals

• Holistic TIA Portal project & libraries that suits various machine types

• Guidance and best practice sharing how to implement various application uses cases

• Easy extention by utalizing additional Siemens technology offerings, out-of-the-box libraries, application examples,

templates, and how to integrate them

Benefits for the machine builder and equipment end users

• Modularity allows reusability and better return of invest

• Isolation of equipment increases flexibility

• Fast implementation and harmonized operation of different machine types

• Flexibility to manage updates, feature extension and change request

• Preconfigured operation key performance indicators (KPI)

• Harmonized process and system diagnostics speeds up commissioning and minimizes production downtime

NOTE
The intention of the AFBasic project is to be used as a TIA Portal project template for various machine
types. It does not claim to be a fully comprehensive out of the box solution. The user remains
responsible developing his own application, implementing the needed use cases, and incorporating
updates and patches where necessary.

For existing machine code implementation, the user can import and utilize elements of the AF library
where appropriate.

Required knowledge

A general knowledge of the following areas is needed to understand these manuals:

• Automation engineering within

- SIMATIC and SINAMICS Hardware

- SIMATIC STEP 7 (TIA Portal)

- SIMATIC WinCC Unified (TIA Portal)

- SINAMICS Startdrive (TIA Portal)

• Machine and plant diagnostics

• Industrial Communication and Networks

NOTE
Please be aware that the usage of the TIA Portal project requires the latest Unified Panel image version
(from V20.0.0.0).

Introduction

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 10

2.2. Scope of Delivery

The Version 2.2.2 of Automation FrameworkBasic /AFBasic Library includes:

• This user documentation "109987391_AutomationFramework_Basic_DOC_V2_2_2_en.pdf"

• TIA Portal Project "109987391_AutomationFramework_Basic_PROJ_V2_2_2_V20.zip"

Introduction

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 11

2.3. Used Libraries

The following TIA Portal libraries are used in the AFBasic project:

AFBasic Global Library

The AFBasic global library contains all sub-libraries, master copies and user documentation recommended for the AFBasic.

Upcoming releases, patches, and updates will be provided via this global library. Update procedures based on TIA Portal

standard features are covered in chapter Library handling and updates.

Library
Name

Description Link

LGF

The Library of General Functions (LGF) extends the STEP 7 instructions in TIA Portal for PLC
programming (mathematical functions, times, counters, etc.). The library can be used
unrestricted and contains features such as FIFO, search function, matrix calculations, astro timer,
etc.

SIOS-ID:

109479728

LPML
The OMAC PackML library (LPML) provides a user-friendly basis for the configuration and use of
an OMAC-compliant mode and state manager for SIMATIC.

SIOS-ID:
109821198

LUC

The Library of Unit Control (LUC) provides function blocks that simplify LPML OMAC state
machine handling, preprocesses operator or remote commands (e.g. via OPC UA) and offers a
stack light implementation. It uses blocks and data types from the LPML and extends its
functionality.

SIOS-ID:
109974940

LAF

The Library of Automation Framework (LAF) provides blocks to easily implement an ISA-88
structure and common functions. It uses blocks and data types from the LUC library and extends
its functionality.

As part of
Automation
Framework

LSNTP
(LCom)

The use of a SIMATIC S7 CPU as an SNTP server enables flexible and simple synchronization of
systems and subsystems, for example, to obtain meaningful timestamps for error messages and
logging data system wide.

SIOS-ID:

109780503

LAxisCtrl
This library provides an axis function block with very extensive functions for simple control of
axes. It is used in the LBC library blocks for axis control or be used standalone.

SIOS-ID:

109749348

LBC

The “Library of Basic Controls” (LBC) provides basic controls that are programmed in a
standardized concept according to the Siemens programming style guide and the “PLC Open”
guideline.

SIOS-ID:

109792175

LPD

The “Library of PLC data types" (LPD) contains PLC data types which describe the data structure of
the address spaces and the data records of peripheral / technology modules and PROFIdrive
drives.

SIOS-ID:

109482396

Table 2-1: Libraries used in AFBasic project

https://support.industry.siemens.com/cs/ww/en/view/109479728
https://support.industry.siemens.com/cs/ww/en/view/109479728
https://support.industry.siemens.com/cs/ww/en/view/109821198
https://support.industry.siemens.com/cs/ww/en/view/109821198
https://support.industry.siemens.com/cs/ww/en/view/109974940
https://support.industry.siemens.com/cs/ww/en/view/109974940
https://support.industry.siemens.com/cs/ww/en/view/109780503
https://support.industry.siemens.com/cs/ww/en/view/109780503
https://support.industry.siemens.com/cs/ww/en/view/109749348
https://support.industry.siemens.com/cs/ww/en/view/109749348
https://support.industry.siemens.com/cs/ww/en/view/109792175
https://support.industry.siemens.com/cs/ww/en/view/109792175
https://support.industry.siemens.com/cs/ww/en/view/109482396
https://support.industry.siemens.com/cs/ww/en/view/109482396

Introduction

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 12

2.4. Hardware and Software Requirements

The AFBasic project was developed based on the following components:

Hardware

• SIMATIC S7-1200 G2 with Firmware Version V1.0.0 or higher (SIOS-ID: 109972011)

• WinCC Unified Panel with display size 12" (from Panel Image V19.0.0.2, SIOS-ID:109825605)

• SINAMICS S200, S210 and G120

• ET 200SP

Software

• TIA Portal V20 or higher

• SIMATIC STEP 7 Basic V20 or higher for PLC engineering

• SIMATIC WinCC Unified 20 or higher for HMI engineering

• SINAMICS Startdrive Basic V20 or higher for configuration and commissioning of drives, PLC connection, diagnostic,

optimization and parametrization

• TIA Portal Add-In Code2Docu \4\ for generating PLC-Block documentation

Optional products to be used

• S7-PLCSIM V20 or higher for PLC logic simulation

• SIMATIC WinCC Unified PC Runtime V20 or higher for simulation of the HMI application

• SIMATIC Visualization Architect (SiVarc) for automatic generation of "ready to use" screens

• SINAMICS Startdrive Advanced for safety acceptance and safety activation tests, measurement functions and long-

term trace

Licenses

The following licenses are used in the AFB project:

Mandatory
See current AFB component release list

for order and version information
License which must be delivered to the end user

Yes SIMATIC STEP 7 Basic V20

No SIMATIC S7-PLCSIM V20

Yes
SIMATIC WinCC Unified V20 Comfort

Engineering

No SIMATIC WinCC Unified PC Runtime V20 1x Runtime License for SIMATIC WinCC Unified PC (10k) RT

Yes SINAMICS Startdrive Basic V20

No SINAMICS Startdrive Advanced V20 1x Engineering-License for SINAMICS Startdrive Advanced

Table 2-2: Licenses for ABF project

NOTE
The HMI power tag license might vary with your specific application. Please ensure corresponding
license size if needed.

https://support.industry.siemens.com/cs/document/109972011
https://support.industry.siemens.com/cs/ww/en/view/109825605

Introduction

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 13

2.5. User-defined documentation - Online Help

Over time, you create your own contents in your project or library, for example, blocks, tags, or library types. While the

operating principle of the TIA Portal is described in the supplied help system (F1), there is no help for the contents you

have created yourself.

TIA Portal provides a system function to open a document (Shift+F1) related to the block. You can create your own user-

defined documentation to explain to other employees how your project and functions work or how to use individual

library types or blocks.

NOTE
User-defined documentation is not copied together with a type to another library. You need to copy
the user-defined documentation for types to the corresponding directory.

For additional help on using the user-defined documentation, refer to the section "Using user-defined
documentation" in TIA Portal documentation.

Figure 2-2: How to open online help for library blocks

2.5.1. Directories for user-defined documentation

User-defined documentation can be saved in the following directories:

TIA Portal project folder

Save the documentation under [project folder]\UserFiles\UserDocumentation\[language]. This way the documentation

can be forwarded with the TIA Portal project.

Directory of a global library

Save the documentation in the directory of the [global library]\UserFiles\UserDocumentation\[language]. This way the

user-defined documentation can be forwarded with the global library.

Introduction

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 14

Central directory on the hard drive or a network drive

You can store the documentation in a central directory on the hard disk or on a network drive. This way you can access

documentation from different projects or share the documentation via network drive. The directory path for the user-

defined documentation must be specified in the TIA Portal XML configuration file or via the TIA Portal settings.

2.5.2. Code2Docu

In AF the user documentation is written in the code section of each block (Comment of Network 1 and 2 as multi-

language for LAD blocks and a comment in Region Header Info and Description for SCL blocks).

Figure 2-3: Example of a block documentation generated with the add-in Code2Docu

With the help of the TIA Portal AddIn Code2Docu \4\ a document can be created for each block automatically for all used

languages.

Figure 2-4: Code2Docu – Process flow.

Introduction

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 15

2.6. Programming conventions

AF follows the conventions of the Siemens Programming Style guide for S7-1200/S7-1500 and the rules of the Siemens

Programming Guideline, Siemens Programming Guideline for Safety and Engineering Guidelines for WinCC Unified.

More information about the Programming Style guide available in the following link:

Siemens Guidelines

Programming Styleguide

Deviation from these guidelines apply to the following guideline style rules:

• GL003 Rule : Supply texts in all project languages.

Project texts must always be translated into all active project languages. While the AF project supports Chinese,

English (UK), French, German, Italian, Korean, and Spanish, the texts are currently provided only in English (United

States). Users are responsible for editing and supplying the translations needed for their specific project languages.

Figure 2-5: In the block editor the texts and their translations can be easily managed in the tab “Texts”

• NF002 Rule : Use meaningful comments and properties

Comment and property fields shall be used and filled with meaningful comments and information. This includes, for

example

- Block title and block comments (refer also to “NF003 Rule: Document developer information“)

- Block interfaces (variables and constants)

- Network title and network comments

- PLC data types, Named value data types and their variables

- PLC tag tables, PLC tags and user constants

Introduction

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 16

- PLC alarm text lists, PLC supervision & alarms

- Library properties

Justification: Using this the user gets the most information and guidance in using the components, e.g. through

tooltips.

Although the AF project supports Chinese, English (UK), French, German, Italian, Korean, and Spanish, the texts are

currently provided only in English (United States). Users are required to add translations in the necessary project

languages.

Figure 2-6: Manage and edit text and translations in the block editor easily

• NF005 Rule : Use UpperCamelCase for objects

Identifiers for TIA Portal objects, such as:

- Blocks, Software Units, Technology Objects, Libraries, Projects, Namespaces

- PLC tag tables, PLC alarm text lists

- Watch and force tables

- Traces and measurements

are written using UpperCamelCase (PascalCasing).

The following rules apply for UpperCamelCase:

- The first character is a capital letter.

- If an identifier is assembled out of multiple words, then the first character of each word is a capital letter.

- There are no separators (e.g. hyphen or underscore) used for the optical separation of the identifier. For

structuring and specialization purposes the sparingly use of the underscore (not more than three) is permitted.

In AF project there is a deviation in the PascalCasing rules by identifying an object with several capital letters in a row.

Introduction

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 17

The rule needs to be broken to ensure a clear and understandable identifier for the object. The reasons for breaking

the rule are to maintain clarity when using widely recognized abbreviations like LAD, KOP, and FUP, and to introduce

new abbreviations, such as LAF for LibraryAutomationFramework, ensuring they remain easily identifiable. For

example, according to the rule, the block “LAF_SequenceManagerLAD” should be written as
“LAF_SequenceManagerLAD,” but this creates a confusing identifier. Following the rule strictly would result in less

readable identifiers.

Programming Guideline

Compliance with the following programming rules is strongly recommended:

• Do not use bit memory/markers, define global data block (DB) instead.

• Disable "evaluate ENO" for blocks to improve performance within LAD/FBD.

• Add supervisions directly inside the object (FC, FB, UDT) to benefit from the type instance concept.

• Exchange variables only via the block interfaces (In, Out, InOut) to ensure reusability of the blocks.

• Prefer CASE instruction before If..Else..Elseif or loops where possible.

• Use user-defined data types (UDT) instead of STRUCT datatype.

NOTE
TIA Portal supports a maximum of 252 structures (STRUCT datatype) within one data block.

• DA005 Rule : Exchange data only via formal parameters

Data exchange within the PLC with FBs or FCs is always carried out via the block interface (input, output or in/out

parameters).

If FBs or FCs are used as a call environment or for structuring the software and do not require an interface for reuse,

formal parameters can be omitted. In this case, data is exchanged exclusively via direct access to global data. Mixing both

types of access in one block is not permitted.

Justification: In terms of encapsulated modules, data is decoupled via the interface and dependencies are resolved. This

ensures data consistency in the event of multiple calls (possibly at different program locations). If a call

environment/structural element does not require an interface for reuse, the effort can be reduced by not using formal

parameters.

The current version of the Automation Framework doesn’t fully comply with this rule, as many users handle it differently
today for various reasons. The Automation Framework targets a broad market and therefore contains a mix of direct

access and access via a block interface in the current version.

Depending on user feedback and further developments of the TIA Portal, we reserve the right to exchange data between

objects in future versions of the Automation Framework exclusively via the interface.

NOTE
For further details, see also chapter Passing data via block interface vs. direct global access.

AF Guidelines

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 18

3. AF Guidelines
This document describes how to use the Automation FrameworkBasic. Further guidelines used by the AFBasic are listed in the

Chapter Siemens Guidelines

Library handling and updates

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 19

4. Library handling and updates
This chapter describes how to use a TIA Portal library the most efficient way. Preliminary actions are introduced to prepare

for library updates during the project phase without affecting your custom code. The AF Library and all Types in the AF

project are delivered “Versioned” to prevent changes on the original elements and to ensure updateability.

4.1. The library concept

There are two concepts supported for TIA Portal Library usage: Types and Master Copies.

NOTE
For more information about libraries, please see the Guideline on Library Handling in TIA Portal.

Figure 4-1: Differences using library copies vs library types

Using Types

When storing an object as Type in the library any instance of this object keeps the relation to their origin library Type.

Types support versioning and enable changes centrally within the library object. The changes on a library type can be

updated throughout the entire project and all its instances. With this procedure only a single point of change is necessary.

Using Master Copies

When storing an object as Master Copy any instance is only a copy of this TIA Portal library object. The copies do neither

keep the relation to their origin nor is versioning or central editing supported.

For this reason, the recommendation is to use library types where it is possible.

4.2. How to fix library inconsistencies

When working with nested library types, changes to the origin type may affect its dependent types. The TIA Portal library

status will inform you about existing inconsistencies. It is important to resolve these inconsistencies before running a

project update from a global library.

NOTE
It is recommended to begin with "Right click type" > "Fix inconsistencies" and, depending on the
available options "Use default version" or "Advanced edit type" to prioritize the default version. More
detailed explanation can be found in Guideline on Library Handling in TIA Portal.

https://support.industry.siemens.com/cs/de/en/view/109747503

https://support.industry.siemens.com/cs/de/en/view/109747503
https://support.industry.siemens.com/cs/de/en/view/109747503

Library handling and updates

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 20

Use of Library management

Sometimes the following user interactions are necessary to resolve library inconsistencies. Right click the Types folder in

your project library and choose “Library management” from the context menu. Inconsistencies are highlighted in yellow.

Figure 4-2: Library management

The following notes introduces one example of library inconsistency and how to resolve them:

Use case with two inconsistencies at the same time deadlock auto-resolve

• The latest UDT version (V0.0.5) is not the default version.

• The current default version (V0.0.4) does not use ONLY default types.

Figure 4-3: Library management

The displayed information helps understanding the current inconsistencies:

• Which Types are used and its folders as clickable hyperlink to open the target.

• The Version of each Type used.

• Which version are in status [default].

Resolution: Update the interface of an HMI type to the default (latest) version.

• Open the HMI Type - Right click on the type and choose “Edit type”.

Library handling and updates

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 21

• Go to Tag interface and check which UDT version is used.

Figure 4-4: Tag Interface

• Check in the Library Management which is the default version.

Figure 4-5: Library management

• Connect the default version to the UDT in the Tag Interface of the HMI Type.

Figure 4-6: Update interface UDT

• Now you can release the HMI type as new default version.

• Please always set both checkboxes to stay consistent.

Library handling and updates

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 22

Figure 4-7: Release type

NOTE
If other library inconsistencies occur, they need to be fixed in a similar way.

4.3. How to use a provided library

The AF comes with a global library where most of the provided objects, not all, are of typed objects. The user is highly

encouraged to reuse and adapt the provided features to his needs but to ensure updateability the following information is

important to understand.

Delivered Types

Use the type objects like they are delivered, do not modify them.

• Your modification will be overwritten with the next library update (newer version) of this type.

• The next library update may not work automatically concerning version conflicts.

Modify Delivered Types / Create own Types (within AF library content)

All AF library types are versioned which is like a write protection.

If you see the need to create your own derived type from such a block you can follow the next steps in the following

section.

Use case - Modify Delivered Types / Create own Types (in general)

You receive a TIA Portal library and like to modify a type (or block) e.g. adapt the interface, along your specific

requirements.

The recommended way is to create a duplicate of the type, you would like to modify in the library. The duplicate type is

now a new type (new type-id) which can be modified along your needs.

Library handling and updates

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 23

Follow this procedure:

• Duplicate the original type from the library into the PLC.

• Select the type-object in the library.

• Right-click and choose "duplicate type".

Figure 4-8: Duplicate a type

• Save the Type - It is recommend to fill all the properties of the new type.

Figure 4-9: Save duplicate type

• Now you can modify your new type along your needs, without interference the update chain of the original type.

Library handling and updates

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 24

NOTE
Now, you are responsible to keep your type aligned with bugfixes or improvements of the original
type, so keep an eye to the upcoming updates of the provided library.

Use case – Use your own type in the project

If you already used the original type in your project and now like to use your new duplicated type, you need to change the

call (PLC or HMI) from the original type to your own type manually.

Use case – You already modified an original type

If you modified an original type and you receive a new version of the global library as an update.

• Before you start the update, create a duplicate of the modified types as described above.

• Now you can run the library update without interference to your modification.

Versioning

If you release a new (own) type or version the "Release type version" box will appear.

Do not change the "default version". The new created version is and should be always the default version.

• Check always (if available) "Update instance in project".

• Check always "Delete unused versions without the "default" identifier from the library". Thus prevent to use the wrong

versions.

• Check always (if available) "Set dependency types to edit mode". Thus prevents the library from inconsistencies.

Figure 4-10: Release all types, non-default versions get deleted

Library handling and updates

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 25

• You can use the Release All command to release all types in edit at ones.

Figure 4-11: Release All

If you consider these tips, the whole library update procedure will be a small effort and not very time consuming for you.

4.4. How to update the project with Global Libraries

Global libraries provide an efficient possibility to transport new versions of typed objects from a central development

project to the machine projects.

NOTE
Save your current Project as a backup before you do the next steps.

Navigate to global libraries section

• Go to Libraries section.

• Click on the “Open global library” symbol.

Library handling and updates

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 26

Figure 4-12: Open a global library

Select and open the Global AF Library

• Select “Compressed libraries” as file type.

• Choose the library that you want to use for the update.

• Open the library

Figure 4-13: Open global library

Library handling and updates

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 27

Update the project library with new AF Library items.

• Right click on the “Global Libraries”.

• Select the “Update types” option.

• Select “Library”, so that all the types and instances of your Project library will be updated.

Figure 4-14: Update types from Global library

Figure 4-15: Update types in Project library

• Activate “Delete unused type versions without the “default” identifier from the Library” to clean the Library.

• Activate “Force update (types including their dependent types are updated regardless of their version number)”.

• Activate “Update only existing types” to update only the types tha are in your project library

Library handling and updates

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 28

4.5. How to update Master copies

The master copies need to be integrated via copy and paste or drag and drop into the Project library.

Figure 4-16: Import Master copies

Figure 4-17: Overwrite existing items

If this message appears, choose “Replace existing objects and move to this location".

Now the Project Library is updated with the Master copies from the global library.

Library handling and updates

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 29

Best practice if you already used a master copy and modified it in your project:

To avoid losing own implementation (only if you modified something) in your project by implementing the new master

copies, the following procedure can be used as best practice:

• Drag and drop the new master copy to the target device location and choose option “Rename and paste objects”.

Figure 4-18: Rename and paste objects

The result will look like this:

Figure 4-19: Renamed object

Now you can open both screens in the split screen view and transfer the objects to your screen along your needs.

Figure 4-20: Split screen view

Hardware configuration

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 30

5. Hardware configuration
The AFBasic project comes with a pre-configured application example. In this chapter the selected HW configuration is

introduced.

5.1. PROFINET IO with RT / IRT configuration

PROFINET IO is a scalable real-time communication system for fast Ethernet. There are two performance levels available,

PROFINET RT for real-time-critical process data, and PROFINET IRT for high-accuracy and isochronous processes. Both types

of PROFINET communication can be combined on the same network.

The AFBasic project introduces a network configuration with two drives using IRT (see highlighted in picture below).

Figure 5-1: Topology-view with RT and IRT configuration

NOTE
By default, IRT supports up to 128 (64+64) network devices using X1 and X2 on innovated CPUs (with
FW >= V4.0). If more than 64 IRT devices are needed it can be realized with PROFINET DFP (dynamic
frame packing) and the software controller S7-1508S T/TF (384 (256+128) with CP1625 using X1 and
X2 with FW >= V31.1).

- SIMATIC S7-1508S T/TF

- SIMATIC ET 200SP (HS)

- SIMATIC PN/PN Coupler

- SINAMICS S200

- SINAMICS S210 (6SL5310…)

Further information regarding DFP can be found in the function manual “PROFINET with STEP 7”.

SIOS-ID: 49948856

https://support.industry.siemens.com/cs/ww/en/view/49948856

Hardware configuration

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 31

For drives using IRT, there is the option to configure “Dynamic Servo Control” (DSC). DSC has the advantage of
outsourcing parts of the motion control close loop from the PLC onto the drive. This heavily reduces the CPU load and

enables highspeed position control executed in the drive HW (see highlighted in the next figure).

Figure 5-2: DSC enabled with PROFINET IRT configuration

5.2. PROFINET Topology

Topology configuration is a prerequisite for IRT. The programmer must connect the specific ports between devices,

exactly as it is connected in the real machine.

Figure 5-3: Topology view

The topology information is used to optimized data transmission, bandwidth allocation, and communication frames

which guarantees best PROFINET performance.

Hardware configuration

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 32

5.3. Time synchronization and time settings

The system diagnostics with alarm logs benefit when the log timestamps from the subsystems are time synchronized with

the PLC date-time. Sometimes the PLC date-time itself is synchronized with some higher-level system using NTP (Network

Time Protocol). The following chapter will introduce the necessary settings to enable a cascaded, system wide time

synchronization using the LSNTP library.

Figure 5-4: Time synchronization network overview

PLC date-time synchronization with a higher-level system

Before the PLC date-time is passed down to the different subsystems using the LSNP library, the PLC date-time can also be

synchronized with an external higher-level system (NTP Server).

To do this, the NTP client of the PLC must be enabled. The following settings must be configured in TIA portal. To finish

the configuration a download to the PLC is needed.

Figure 5-5: Configuration of NTP Client in the PLC

NOTE More information about PROFINET and all features can be found in the function manual “PROFINET
with STEP 7”: SIOS-ID: 49948856

https://support.industry.siemens.com/cs/ww/en/view/49948856

Hardware configuration

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 33

NOTE
The use of an external NTP server for time synchronization is optional.

PLC date-time manual configuration

In case date-time synchronization with an external NTP server is not used, the PLC date-time can be directly set via the AF

HMI. The screen “Settings – Date and time” sends the new date and time through the variables in
“Settings.setLocalPlcTime” to the instruction “WR_LOC_T” in 01_Central Functions – 14_Settings.

Figure 5-6: Manual configuration of PLC date-time via the AF Settings screen

Subsystem date-time synchronization. SNTP Technical concept

Once the PLC date-time has been configured, either manually via the HMI or automatically via an external system, the PLC

can then act as a SNTP (Simple Network Time Protocol) server. This enables flexible and simple synchronization of all

subsystems in the network (drives, IOs, HMI panels, etc.), in order to obtain meaningful timestamps for error messages,

and logging data system wide. The library LSNTP provides a function block (LSNTP_Server) that performs the following

functions:

• Receiving and evaluating a NTP telegram from an (S)NTP Client.

• Creating and sending a NTP telegram to the client for time synchronization.

The LSNTP_Server instruction is called from the 01_Central Functions – 00_General.

Figure 5-7: LSNTP_Server block activates the NTP server on the PLC

Hardware configuration

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 34

With the SNTP server running on the PLC, the network subsystems (NTP clients) can synchronize their date-time with the

central PLC.

NOTE
NTP client function in variable frequency drives, is currently supported only by S120 and S210.

HMI date-time synchronization with central PLC

To configure a Unified Comfort panel as NTP client of the central PLC, the following settings must be configured in TIA

portal. The IP address of the NTP Server must be that of the central PLC. To finish the configuration a download is needed.

Figure 5-8: NTP client setting in TIA Portal

Likewise, the configuration of the NTP client on the Unified Comfort panel can be done directly in the “Date and time”
settings of the panel.

 Figure 5-9: NTP client setting in HMI panel

PLC Software Architecture

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 35

6. PLC Software Architecture

6.1. Overview

The PLC program of the AFBasic is structured in the following major parts:

Figure 6-1: Main parts of the AFBasic PLC program

1. Central Functions: Contains general functionality like PLC setting, diagnostics or system features.

2. Global: Contains all data that is globally available in the PLC

3. Motion: Contains the Motion Control OBs

4. ObjectsOfProjectLibraryUsed: Contains the library elements (Blocks, PLC data types) from the project library, that are

used in the program.

5. Machine Application: This is a major part of the program. It contains the actual machine application. It is structured

according to ISA-88.

Part 1 – 4 are highly standardized and usually don’t have to be adjusted by the user. Part 5 is machine and application

specific and must be programmed by the user. The structure, interfaces, alarming concept and command and status flow

for parts 5 is provided, the user must integrate the specific code.

6.2. ISA-88 design

ISA-88 introduction

Industrial processes can be classified as continuous, discrete or batch manufacturing processes. Continuous processes are

classified having a continuous outflow, for example production of paper or steel. Discrete processes have a discrete

output, for example the production of a car.

A batch process is a process that leads to the production of finite quantities of material by subjecting quantities of input

materials to an ordered set of processing activities over a finite period using one or more pieces of equipment.

There was a need to provide a standard for managing batch processes because of the following reasons:

• No universal model for batch control.

• Difficult for plant operators to communicate processing requirements.

• Integration of solutions from different vendors is difficult.

• Batch control solutions are difficult to configure.

Therefore, the ISA (International Society of Automation) decided to provide a standard which describes a method to

structure batch processes. It defines terminology and models that makes design and operation of batch plants easier and

PLC Software Architecture

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 36

uniform. This standard is named ISA-88, whereby only the first part of the standard (ANSI/ISA–88.00.01–2010), called

"Models and Terminology" is considered in this document.

ISA-88 is more than a standard for software, equipment, or procedures. It is a design philosophy. Understanding ISA-88

will help to better design processes and manufacture products.

How does ISA-88 help?

• Modularity allows easier global replication and better return on investment.

• Isolates equipment from recipes.

• Design concepts make validation easier.

• ISA-88-aware solutions help track product and process data.

• Gathering requirements from customers and conveying requirements to vendors is easier.

• Provides guidelines on how to recover from abnormal events.

NOTE
For more details about Batch Processes please go to the linked document.

https://support.industry.siemens.com/cs/ww/en/view/109784331

Concept

The ISA-88 is an important foundation for the modular programming structure of production machines. The AF project

introduces an implementation example of an ISA-88 conform physical model from a unit down to control modules (CM).

The following figure shows such hierarchical implementation.

Figure 6-2: ISA-88 model

Unit classification

A process cell contains several units. The units represent a physical processing equipment in production, for example a

reactor. The unit contains equipment modules (EMs) which contain control modules (CMs). A unit is an independent

grouping of equipment usually centered around a major piece of processing equipment, such as a mixing tank or reactor,

and it can perform one or more major processing activities — such as fermenting, harvest or purifying.

https://support.industry.siemens.com/cs/ww/en/view/109784331

PLC Software Architecture

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 37

Usually, the modules that make up the unit cannot be manipulated or controlled by equipment outside of its own unit.

Any equipment that is considered common or manipulated by multiple units should be defined as shared equipment,

which can be temporarily acquired by a unit to carry out specific tasks.

An important consideration when defining batch units, is that a unit can only operate a single batch at the same time. The

batch may exist in multiple units, but a unit can hold only one batch at any given time.

Defining the boundaries for units is important to guarantee the flexibility of the plant, reusability of the modules, and

consistent reporting over multiple plants. The Process flow diagram (PFD) can be used to initially identify the units. Once

the P&ID details are known, the unit can be further refined. In case of modular integration of intelligent unit operations,

the unit and its ISA-88 structuring are defined by the OEM supplier.

Control Module (CM) classification

Once the unit boundary is defined, the lower-level modules of the equipment model can be identified.

It’s easiest to start with the control modules (CM). These are the lowest level grouping of equipment in the physical model

that can carry out basic control (state-oriented or regulatory control) and typically have a direct relationship to the type of

instrument/device that it is being monitored and/or controlled. Examples are pumps, motors, valves, but also PID control

loops. The CMs are typically directly connected to IO signals. CM also contains exception handling related to equipment,

product and operator protection. The CMs are easily identified on the P&ID charts, as shown in the following figure. The

control modules can be controlled via the HMI by the operator in manual mode, or by the superior CM’s or EM’s in auto
mode.

Figure 6-3: Example P&ID from process unit "Reactor" with its EM’s (highlighted) and CM’s

Equipment Module (EM) classification

An EM is a functional group of control modules that can carry out a limited number of specific minor processing activities

such as dosing, charging or temperature control. An EM is typically centered around a piece of process equipment such as

vessel outlet/inlet manifold, process heater etc. The separation of a unit into functional EM should already reflect the

process actions and recipe phases from the process and procedural control model. Introducing a new product on the

PLC Software Architecture

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 38

same equipment should be possible without altering the base sequences of the EM’s. The EM’s of our example reactor are
shown in the figure above: feeding, temperature control, pressure control, agitator control and transfer out.

According to ISA-88, it is possible for an EM to contain other subordinate EMs, although this is recommended to be

restricted to areas where there are no phases or batch requirements.

An EM is usually a sequence in which all the subordinate CM’s are monitored and controlled. The EM also contains
exception handling logic that will handle failure of subordinate CM and process failure. Usually, the exception logic is

labelled as held state or held logic and drives the EM to a failsafe state. The EM itself does not have mandatory state logic

defined in the ISA-88. An EM is usually recipe-aware, and it therefore has a state logic that follows the state logic of the

recipe phase.

As the sequence of the EM reflects the process action, it is common to enable and disable control module related alarms

and process interlocks or change alarm limits throughout the sequence. This must be considered within the design of

such command sequences.

Arbitration of control modules shared between EMs within the same unit will be performed at the EM level.

Arbitration of EMs shared in the same unit or between units is performed at the phase level. Each phase will acquire the

equipment modules needed to perform a specific process action. It is also possible to acquire EMs on another unit in the

same way.

When partitioning the EMs within a unit, the following criteria should be applied:

• All CMs in the EM must support a similar processing purpose and be self-contained.

• The EM must be reusable, so that a type-instance concept can be used.

• The module has to be designed so that it can perform all of the available processing functions, see above EM must

have the ability to operate on its own without other EM interactions.

• Ability to minimize the effects of process exceptions by containing them within the EM; ideally an exception will

initially only affect one EM before being propagate to other EM’s or even Units.

Like the CMs, the EMs can be controlled by the operator in manual mode, or by the phases in automatic mode.

It’s important to note that the CMs and EMs should ideally follow the modularization approach where functionality is
contained within modules that can be programmed and tested as standalone with a defined interface towards other

modules. To increase reusability, within TIA Portal support for type-instance is made for the control and EMs. Similar EMs

and CMs can be grouped in a type. This type can be tested and then all modules will be instantiated from this type.

By creating these standard ISA-88 batch elements, tremendous benefits can be achieved:

• savings in software designing and engineering

• faster testing and validation during the initial process of application implementation

• increased maintenance and flexibility - By means of the pre-tested standard types, the expansion of the installation

can be realized in a faster way, with less (re-)validation effort.

Realization in the Automation FrameworkBasic

The basic implementation of an ISA-88 unit is shown in the following figure. The logic of one AFBasic unit is programmed

within a dedicated folder. Each EM also has a dedicated folder. Each unit has one EM0_General which is reserved for unit

wide functionality like preconditions, interfacing to circuit breakers or signal stacks or pneumatic system. The

EM0_General usually contains non-complex logic and no sequences. Additional EMs on the other hand are process

related. There is always at least one. The maximum number of EM is limited by the PLC memory size.

Figure 6-4: ISA-88 unit example in the Automation FrameworkBasic

PLC Software Architecture

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 39

The naming in the folders above are placeholders and must be adjusted depending on the real application. It is

recommendable to name the folders according to their functionality, not to their location, as they should be enabled to

be cloned and reused in different applications.

6.3. Unit State Machine

In the automation framework, each unit contains its own state machine, which can be customized according to specific

requirements.

State Model

The mode and state completely define the current behavior and condition of a unit. Depending on the mode and state,

the equipment and control modules execute their respective tasks. In a state model, states are arranged in an ordered

fashion that is consistent with the specified operation of the machine. The mode state manager determines the current

mode and state of the unit depending on operator commands and feedback from the process.

In the AFBasic, the OMAC PackML state machine is the default state machine used. This state machine can be flexible

reconfigured to comply with other state machines. Other state machine libraries could be used as well. However, that

would imply major changes in the current AFBasic implementation and shall be avoided if possible.

The unit’s state machine it always in a defined mode and state. Mode and state are represented by two DINT variables.

Various predefined commands trigger a mode or state transition. Such commands can be triggered from an operator (e.g.

via HMI or command buttons), from external systems in the line (e.g. infeed station, line controller), or by the process

itself (e.g. material low or stop due to internal error). The unit’s mode state manager is responsible evaluating all these

different commands and determining the currently active mode and state of the machine.

The following modes, states and commands are supported by the OMAC PackML state machine used in the AFBasic:

NOTE
PackML is an automation standard by the OMAC and adopted by ISA as TR88.00.02 that makes it
easier to transfer and retrieve consistent machine data. The primary goals of PackML are to encourage
a common “look and feel” across a plant floor, and to enable and encourage industry innovation.

OMAC’s PackML group is recognized globally and consists of control vendors, OEM’s, system
integrators, universities, and end users, which collaborate on definitions to be consistent with the ISA-
88 standards and the technology and changing needs of most of the automated machinery.

PLC Software Architecture

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 40

Figure 6-5: Modes, states and commands that can be used in the AFBasic

The Library of Unit Control (LUC) provides the data types “LUC_typeModes”, “LUC_typeStates” and

“LUC_typeStateCommands” to represent the modes, states and commands. These data types are used inside and between

the units and its EMs.

The following figure shows the PackML base state model. It represents the complete set of defined states, state

commands, and state transitions. For each unit mode it is possible to define any set or subset of these base states

depending on the application (see Figure 6-7).

PLC Software Architecture

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 41

Figure 6-6: Base state model

Configuration

The state machine can be configured. Up to 16 modes can be enabled. For each mode it can be configured which states

and transitions are enabled.

With that, the state machine is highly customizable. Details are presented in the chapter about units.

Unit Modes

A unit can be operated in different modes, for example in Production, in Maintenance, in Manual, in Clean, in Jog Mode,

etc. In each mode the unit can have different number of states and commands. Therefore, the state machine may look

different for each mode (see Figure 6-7).

In the AFBasic the following OMAC PackML standard modes are preconfigured:

• Production (mandatory):

This is the production routine mode. When this mode is selected, the machine executes relevant logic in response to

commands which are mainly coming from external systems or entered directly by the operator.

• Maintenance (optional):

This mode allows authorized personnel to run the unit / machine independently from other systems. This mode would

typically be used for troubleshooting, machine trials, or testing operational improvements.

• Manual (optional):

This mode allows the direct control of single machine modules. It may be used for commissioning of individual

components, fault diagnostics of unplanned technical intervention, etc.

Different or additional modes can be configured (up to 16 modes in total).

PLC Software Architecture

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 42

Figure 6-7: Example of different modes with the corresponding configured states and allowed mode changes

Unit States

The different states can be group into two types:

• Acting state: A state that represents some processing activity. It implies the single or repeated execution of

processing steps in a logical order, for a finite time or until a specific condition has been reached. In ISA-88.00.01

these are referred to as transient states, generally those states ending in “ING” like “STARTING” or “RESETTING”.

• Wait state: A state used to identify that a machine has reached a defined condition. Once the state is reach the

machine remains in this state until some transitioning is triggered via internal or external commands.

Definition of the possible states and description of what tasks typically should be executed in them:

• Clearing: Initiated by a state command to clear faults that may have occurred when Aborting, and are present in the

Aborted state before proceeding to a Stopped state.

• Stopped: The machine is powered and stationary after completing the Stopping state. All communications with other

systems are functioning (if applicable). A Reset command will cause an exit from Stopped to the Resetting state.

• Resetting: This state is the result of a Reset command from the Stopped or Complete state. Faults and stop causes are

reset. Resetting will typically cause safety devices to be energized and place the machine in the Idle state where it will

wait for a Start command. No hazardous motion should happen in this state.

• Idle: This is the state which indicates that Resetting is complete. The machine will maintain the conditions which were

achieved during the Resetting state, and perform operations required when the machine is in Idle.

• Starting: The machine completes the steps needed to start. This state is entered as a result of a Starting command

(local or remote). Following this command the machine will begin to “execute”.

• Execute: Once the machine is processing materials it in the Execute state. Different machine modes will result in

specific types of Execute activities. For example, if the machine is in the “Production” mode, the Execute will result in
products being produced, while in “Clean Out” mode the Execute state refers to the action of cleaning the machine.

• Stopping: This state is entered in response to a Stop command. While in this state the machine executes the logic

which brings it to a controlled stop as reflected by the Stopped state. Normal Starting of the machine cannot be

initiated unless Resetting had taken place.

PLC Software Architecture

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 43

• Holding: This state is used when internal (inside this unit/machine and not from another machine on the production

line) machine conditions do not allow the machine to continue producing, that is, the machine leaves the Execute or

Suspended states due to internal conditions. This is typically used for routine machine conditions that require minor

operator servicing to continue production. This state can be initiated automatically or by an operator and can be easily

recovered from. An example of this would be a machine that requires an operator to periodically refill a glue dispenser

or carton magazine and due to the machine design, these operations cannot be performed while the machine is

running. Since these types of tasks are normal production operations, it is not desirable to go through aborting or

stopping sequences, and because these functions are integral to the machine they are not considered to be “external.”
While in the Holding state, the machine is typically brought to a controlled stop and then transitions to Held upon

state complete. To be able to restart production correctly after the Held state, all relevant process set points and return

status of the procedures at the time of receiving the Hold command must be saved in the machine controller when

executing the Holding procedure.

• Held: Refer to Holding for when this state is used. In this state the machine shall not produce product. It will either

stop running or continue to dry cycle. A transition to the Unholding state will occur when internal machine conditions

change or an Unhold command is initiated by an operator.

• Unholding: Refer to Holding for when this state is used. A machine will typically enter into UNHOLDING automatically

when internal conditions, material levels, for example, return to an acceptable level. If an operator is required to

perform minor servicing to replenish materials or make adjustments, then the Unhold command may be initiated by

the operator.

• Suspending: This state shall be used when external (outside this unit machine but usually on the same integrated

production line) process conditions do not allow the machine to continue producing, that is, the machine leaves

Execute due to upstream or downstream conditions on the line. This is typically due to a blocked or starved event. This

condition may be detected by a local machine sensor or based on a supervisory system external command. While in

the Suspending state, the machine is typically brought to a controlled stop and then transitions to Suspended upon

state complete. To be able to restart production correctly after the Suspended state, all relevant process setpoints and

return status of the procedures at the time of receiving the Suspend command must be saved in the machine

controller when executing the Suspending procedure.

• Suspended: Refer to Suspending for when this state is used. In this state the machine shall not produce product. It

will either stop running or continue to cycle without producing until external process conditions return to normal, at

which time, the Suspended state will transition to the Unsuspending state, typically without any operator

intervention.

• Unsuspending: Refer to Suspending for when this state is used. This state is a result of process conditions returning to

normal. The Unsuspending state initiates any required actions or sequences necessary to transition the machine from

Suspended back to Execute. To be able to restart production correctly after the Suspended state, all relevant process

set-points and return status of the procedures at the time of receiving the Suspend command must be saved in the

machine controller when executing the Suspending procedure.

• Completing: This state is an automatic response from the Execute state. Normal operation has run to completion, i.e.

processing of material at the infeed will stop.

• Completed: The machine has finished the Completing state and is now waiting for a Reset command before

transitioning to the Resetting state.

• Aborting: The Aborting state can be entered at any time in response to the Abort command or on the occurrence of a

machine fault. The aborting logic will bring the machine to a rapid safe stop.

• Aborted: The machine maintains status information relevant to the Abort condition. The machine can only exit the

Aborted state after an explicit Clear command, subsequently to manual intervention to correct and reset the detected

machine faults.

NOTE

For more information about the state machine model, which is used in this template, refer to:

https://www.omac.org/packml

SIMATIC OMAC PackML V2022 library (LPML) mode and state manager \LPML\

https://www.omac.org/packml

PLC Software Architecture

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 44

6.4. Program structure

Main structure

The PLC program contains global data blocks, that are available for all other modules, for units, EMs, Central Functions

and Motion:

• DB HmiControlInterface : Contains the control interface to the HMI.

• DB Data : Contains all PLC wide information

• DB Units : Contains the information that is provided by the individual units

• DB UnitxEms : Contains the information that is provided by the EMs. Each units has and own DB UnitxEms.

These DBs work as central data hubs between the modules. With that, the AFBasic is highly modular and scalable. I.e., an

additional EM would be assigned to an existing unit by connecting it to DB “Units”, and the EM itself would publish its own

status to UnitsxEms.

The following figure shows, how units and equipment modules access the data blocks.

Figure 6-8: Data access between modules and data blocks

Units and EMs access the data blocks for the following reasons (see red indicators in above figure):

1. Unit gets commands from the DB “HmiControlInterface”. Additional DB “Interface” could be added, e.g. DB
“RecipeControlInterface” and connected to FB “LUC_InterfaceManager” inside the Unit.
Unit write status back to DB “HmiControlInterface”.

2. Unit reads global data from DB “Data”. This could be e.g. PLC time, general releases or clock bits.

3. Unit writes information and status to DB “Unit”. From there, EMs and other Units can read that information. It
can also be used for the HMI for visualization.

4. Unit read status of relevant EMs from DB “UnitxEms”. This includes if the EM is linked, feedback of the EM if the
execution of the code for the current state is complete (state complete) and commands derived from alarms,

e.g. stop command due to a control module error.

5. EM reads global data from DB “Data”. This could be e.g. PLC time, general releases or clock bits.

6. EM reads unit status from DB “Units”, e.g. mode, state and unit releases.

7. EM writes status to DB “UnitxEms”. This includes if the EM is linked, feedback of the EM if the execution of the
code for the current state is complete (state complete) and commands derived from alarms, e.g. stop command

due to a control module error.

PLC Software Architecture

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 45

Units and equipment modules consist of the following main parts:

• DBs for alarms and configuration data.

• OBs for execution of startup logic and main logic.

• FB “CallUnit” as call environment for all other library blocks, user defined blocks and direct logic.

Equipment modules additionally contain

• DBs for HMI data and command and status handling to job, sequences and control modules.

Figure 6-9: Main program blocks of a ISA-88 units and equipment modules

Details can be found in the dedicated chapter about Units and Equipment Modules.

Data handling of FB CallUnit and FB CallEquipment

Two different approaches how to handover data to FB “CallUnit” or FB “CallEquipment” are possible.

6. Handover data from outside the unit / equipment through the block interface and access data from own DBs directly.

7. Handover data exclusively through the block interface

PLC Software Architecture

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 46

The following figure shows the two solutions schematically for an FB “CallEquipment”.

Figure 6-10: Different approaches for data handling. Left: Solution 1. Right: Solution 2

The AFBasic follows approach 1as the benefits outperform the drawbacks for most applications. For very high

standardization however, approach 2 is more suitable. An implementation of that approach is shown in Unit 1 – EM 5.

A detailed comparison of both approaches is discussed in chapter 6.10.1 Passing data via block interface vs. direct global

access.

Central Functions

Central functions are running outside of units or equipment modules centrally for the PLC. These could be:

• PLC system functionality like PLC clock and cycle time monitoring

• Central hardware diagnostics

• Handling of multiple HMI panles.

The program part “Central Functions” is allowed to access any data accross the PLC.

A central OB “Main” calls all central functions.

PLC Software Architecture

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 47

Central functions are primarily provided by the AFBasic, hoewever, user could add their own central functions.

Figure 6-11: Content and interfaces of “Central Functions”

PLC Software Architecture

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 48

6.5. Program Folders

6.5.1. Overview

The Automation FrameworkBasic uses folders to structure the PLC program. The AFBasic project comes with the following

folders for general functionality:

• “Central Functions” → Mandatory

• “Global ” → Mandatory

• “Central Functions” → Mandatory

• “ObjectsOfLibraryUsed” → Mandatory

• “Motion” → Optional, if technology objects are used for motion control

6.5.2. Machine application structure

The machine application part of the PLC could be structured into software in multiple ways. By default, the standard

structure is used. Each ISA-88 unit and equipment module is programmed in an own folder, including an own OB Main:

• “Ux_Unitx” → Contains the code for unit x.

• “UxEMy_EMx” → Contains the code for EM (y), that belongs to unit (x).

Alternative ways on how to structure the ISA-88 units and EMs into folders are possible. It is recommended to use the

standard folder structure, except specific requirement or limits occur. Details are described further below.

Only the standard solution is provided in the Automation Framework Basic. The user could, however, change easily to

another structure. The data flow (commands and status) is only affected slighly.

Standard structure

Figure 6-12: Standard folders structure of AFBasic for the ISA-88 machine application

PLC Software Architecture

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 49

Combined structure

Figure 6-13: Combined folder structure of AFBasic for the ISA-88 machine application

In the combined structure, no dedicated folders exist for the equipment modules. The ISA-88 unit and its underlaying

folders are all programmed in one folder.

Hierarchical structure

Figure 6-14: Hierarchical folders structure of AFBasic for the ISA-88 machine application

In the hierarchical structure, each ISA-88 unit and equipment module are programmed in an own individual folder

including an own OB Main. DB “UnitxEMs” are located in folder “Unit” instead of “Global”.

PLC Software Architecture

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 50

Comparison of folders structures

 Standard structure Combined structure Hierarchical structure

Amount of folders (o) (++) Fewer folders (o)

Amount of OBs (o) (++) Fewer OBs (o)

Data exchange between EMs (++) Flat hierarchy ensures data accessibility from all EMs to all
other EMs.

If an EMs should access data
from an EM of another unit,
this might take an additional
PLC cycle, as the unit has to
access the data to global first,
to share it with the other unit.

Differentiation between unit
and EM

(+) Clear code differentiation
between unit and EM.

(o) No code differentiation
between unit and em on
folder level.

(++) Very clear differentiation
of code and data interfaced
between unit and EM

Table 6-1: Comparison of the different folder structures

Decision guide

• The standard structure is the recommended solution, as it is most modular and scalable fullfilling all standard

requirements.

• The combined structure should be used, if:

a. a huge amount of EMS and/or units is used.

b. the equipment modules are highly standardized an are instantiable FBs.

• The hierarchical structure shoud be used if the user puts a high emphasis on data seperation and clear definition of

data flow. Due to the point that the EM can only access data from “Unit” and not from “Global”, unwanted cross-access

of data between units and EMs are restrained.

PLC Software Architecture

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 51

6.5.3. Content of program structure

The following figure shows the folders and blocks in the AFBasic.

Figure 6-15: Content of program structure

The folders contain the following content:

• CentralFunctions: Includes sytem wide functions and diagnostics. Central Functions can access data from other

folders, but if other folders want to acces data from Central Functions should be done through a DB.

• Global: Includes global data of all units and contains no logic, it is a purely passive folder. This folder accesses to

ObjectsOfProjectLibraryUsed as it uses PLC data types from the libraries.

• Motion: Includes the Motion OBs. These execute the motion technology objects like axes or cam outputs. Each Motion

OB can only exist once in the entire PLC, therefore all axes across all units are executed at the same time. Motion

commands can be called in two different ways:

- In standard EM cycle (OB “Main” of EM). With that, a few motion servo cycles might pass until the new motion
command has been called by OB “Main” and applied to the axis.

- In a motion OB (e.g. OB „MC_PreInterpolator“). With that, new commands are called in the servo cycle and new

commands to the axis are applied immediately in the next servo cycle. This might be necessary for applications

that require highest reaction times for new position commands. More information can be found in the chapter

Motion and a best practice implemenmtation is realized in the folder MotionDemo (see chapter EM Demo

Implementation – Motion Demo).

• ObjectsOfProjectLibraryUsed: Local instances of the libraries that are used in the PLC program. It only contains

blocks that are used by others.

• Unit: In the standard software structure, each ISA-88 unit is realized in a dedicated folder. The following relations

exist:

- Global: To read global status, commands, EM feedback and to share own status

PLC Software Architecture

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 52

- ObjectsOfProjectLibraryUsed: To use elements from library

• Equipment Modules: In the standard software structure, each EM is realized in a dedicated folder. The following

relations exist:

- Global: To read global status, unit status and to share own feedback to the unit

- ObjectsOfProjectLibraryUsed: To use elements from library

- TOs: Only needed if TO Axes is used. EMs that execute MC commands need to have access the TOs via the relation.

6.6. Startup and cyclic program execution

The execution sequence of the user program depends on the initial event (PLC start or cyclic operation), the OB priority,

and the OB number.

Figure 6-16: Call hierarchy of startup and cyclic OBs

The essential basis of the user program is the cyclic program execution. When all program cycle OBs, the OB “Main” are
executed, the PLC’s operating system restarts the execution from the beginning in the same sequence. These OB “Main”
have the lowest priority 1. Cyclic programs can and usually will be interrupted at any time by events of another events

class having a higher priority. With multiple program cycle OBs, they are called one after the other in the order of their OB

numbers. The program cycle OB with the lowest OB number is called first.

The following events start the cyclic program:

• End of PLC Startup processing.

• End of the processing of the previous run of the cyclic program.

After the cyclic program is complete, the operating system updates the process images as follows:

• It writes the values from the process image output to the output modules.

• It reads the inputs at the input modules and transfers these to the process image input.

OB numbering convention

In the AFBasic, each Unit has its own OB “Main” and OB “Startup” . To ensure the correct call hierarchy, the following
numbering convention is used:

OB number = ueet where

u: Unit number from 1-9

ee: EM number from 0-99

t: 0 = Startup OB, 1 = Main OB, 3/4=empty, 5=StartupEM0, 6=MainEM0, 8/9=empty

PLC Software Architecture

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 53

Examples:

OB Number = 2001 : Unit 2, Main OB

OB Number = 3020 : Unit 3, EM 2, Startup OB

Unit

Nr.

Unit

Startup
Unit

Main

EM 0
Startup

EM 0

Main

EM 1

Startup

EM 1

Main

1 1000 1001 1005 1006 1010 1011

Table 6-2: Extract of OB numbering

Additional OBs not related to Unit or EMs in the AF project have the following OB numbers:

Name OB #

CentralFunctions Startup 0100

CentralFunctions Main 0001

Table 6-3: Higher level function OB numbering

With this OB number convention the program will be executed in the following sequence during cyclic operation:

1. Central Functions OB Main

2. Unit 1 OB Main

3. Unit 1, EM 0 OB Main

4. Unit 1, EM 1 OB Main

5. …

6. Unit 2 OB Main

7. Unit 2, EM 0 OB Main

8. Unit 2, EM 1 OB Main

9. …

OBs having higher priorities (> 1) will interrupt the sequence of the cyclic program execution, e.g. OB Safety, OB

“MC_Servo” or interrupt OBs.

PLC Software Architecture

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 54

6.7. Data flow

The following figure show the flow of the main command and status. It is focused merely on the main command and

neglects all other functionality. The goal is to show a general overview of the core of the AFBasic.

Figure 6-17: Data flow of main commands and status

PLC Software Architecture

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 55

Description of the above figure:

1. The HMI panel writes its operator commands to the DB “Hmi”.

2. FB “LAF_HmiHeaderMultiUnitManager” takes that information, evaluates the input “selectedUnits” and writes
commands in DB “HmiControlInterface” for the selected units.

3. FB “LPMLV2022_UnitModeStateManager” inside FB “CallUnit” gets the commands and set the mode and state. The
mode and state are written in DB “Units”.

4. FB “LAF_SelectJob” within FB “CallEquipment” selects the job depending on the programmed start conditions.

5. FB “Sequence” within FB “CallEquipment” reads the selected job and executes the respective logical steps. Inside the
steps, control commands for the control modules are set and written on DB “ControlNodes”.

6. The FBs for the control modules (e.g. LBC blocks) read the commands and set HW output respectively.

7. The hardware receives commands an reacts accordingly.

8. Status of the hardware is received by the PLC through HW inputs.

9. The FBs for the control modules (e.g. LBC blocks) evaluate the hardware input and write the status in DB

“ControlNodes”.

10. FB “Sequence” reads the status of the control modules and runs through the sequential steps. E.g. if a valve was
supposed to open and the hardware reports a “valve-open” back, the sequence transitions to the next step. If the steps
for the job are fulfilled, the EM evaluates if all jobs for the mode and state are fulfilled. If all tasks for the current mode

and state are fulfilled, the EM writes a “State complete” to DB “UnitsxEms.emFeedback”.

11. FB “LPMLV2022_UnitModeStateManager” reads the feedback of the EMs and transitions to another state, if
commanded or “State complete” of all EMs reported. The current mode and state are written to DB
“HmiControlInterface”.

12. FB “LAF_HmiHeaderMultiUnitManager” reads the mode and state of the units and merges them to a combined status,
depending on the selected units of the individual HMI panels. The summary is written to DB “Hmi”.

13. The HMI panel reads the status in DB “Hmi” provided that specific HMI panel and display the information in the Hmi
header. (mode, state, operability of mode and state buttons).

The following figures shows the detailed variables that are transferred between the different blocks. It gives a high level

overview of some of the most relevant variables. Like in the previous figures, its easiest to start from the HMI header and

follow along the command flow.

• The commands that arrive in DB “Hmi” are distributed to DB “Data” and DB “HmiControlInterface” by FB “CallGeneral”
and DB “LAF_HmiHeaderMultiUnitManager” respectively.

• The unit

- reads the global status from DB “Data”,

- reads and writes unitInterface in DB “Units”,

- reads commands from DB “HmiControlInterface”,

- and writes status back and reads the emFeedback from DB “UnitsxEms”. It additionally reads the safety reease
information from DB “DataFromSafety”.

• The equipment module

­ reads the unit status from DB “Units”,

­ and writes its feedback to DB “UnitxEms”.

• The status that is shared by the unit in DB “HmiControlInterface” is evaluated by FB
“LAF_HmiHeaderMultiUnitManager” and writte to DB “Hmi.”

PLC Software Architecture

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 56

Figure 6-18: Detailed data flow

PLC Software Architecture

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 57

6.8. HMI interface

HMI header

The main header of the HMI provides enables the operator to send commands and shows the main status of the machine.

Figure 6-19: Main header of the HMI panel

The header is connected to the PLC through the date type LAF_typeHeader in DB “Hmi” in folder “Central Functions”.

The PLC can handle several HMI panels and several units, whereas only one HMI can be operable at a time. For details,

please refer to the chapter HMI Software Architecture.

Two FBs are available to convert the information between the HMI header and the unit. This conversion is necessary,

because the operator can select the unit, for which he wants to apply the commands and from which he wants to see the

summarizes status:

• FB “LAF_HmiHeaderSingleUnitManager” : Can handle multiple HMI panles and one unit.

• FB “LAF_HmiHeaderMultiUnitManager”: Can handle multiple HMI panels and multiple unit.

The following figure show the data flow if multiple HMI panels and multiple units are configured.

Figure 6-20: Data flow, if multiple HMI panels multiple units are configured

PLC Software Architecture

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 58

The data is processed as follows:

From HMI to PLC: The commands from the HMI header (power, mode requests, state commands, special functions,

acknowledge, selected units) are written into DB “Hmi”. From there, FB “LAF_HmiHeaderMultiUnitManager” takes the
information and distributes it to the selected units by writing the information in DB “HmiControlInterface”.

From PLC to HMI: The units publish their information for the HMI in DB “HmiControlInterface”. From there, FB
“LAF_HmiHeaderMultiUnitManager” takes it, merges the mode, state and special function information to one displayed
status and provides it to the HMI panels according to the selected units of the respective HMI panel.

Additionally, FB “CallGeneral” evaluates the power and acknowledge commands and writes that information in DB “Data”
for general use.

From “Global” to “Unit”: FB “CallUnit” reads the global general status from DB “Date” and the commands from DB
“HmiControlInterface”. It processes that information and writes relevant information in DB “Units” in and status back to DB
“HmiControlInterface”.

The following figure show the data flow, if only one HMI panel and one unit is configured.

Figure 6-21: Data flow, if one HMI panel and one unit are configured

PLC Software Architecture

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 59

The following figure shows the detailed data that is transferred between the data blocks.

Figure 6-22: Detailed data transferred between the HMI header and the Unit

PLC Software Architecture

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 60

Further HMI interfaces

Besides the HMI header, further connections between the PLC and the HMI exist:

• The units share information about their detailed status including histotry and statistics through DB “Units”

• Each EM contains a DB “HmiInterface” to share status of the em, the jobs, seqeunces and control modules.

• Various data blocks from central function share information, e.g. system settings and diagnostics.

Figure 6-23: Further HMI – PLC interfaces

PLC Software Architecture

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 61

6.9. TIA Portal implementation

The AFBasic contains two sections:

1. General functionality : Central Function, Global, Motion, ObjectsOfProjectLibraryUsed.

2. Unit 1 : ISA-88 unit and EM templates and examples programmed in LAD and SCL.

Figure 6-24: Screenshot of PLC program structure in the TIA Portal project

Equipment module types

The AFBasic distinguishes between two different types of equipment modules:

• Em_Template: Contain only the mandatory blocks and calls. They are the base to start own EMs. Template for each

programming languages are available.

• Em_Example: Contain a basic example of an EM. Each Em_Example contains four CMs and implements one sequence

example. All Em_Examples are designed to execute the same use case such that the user can easy compare the

different implemtation across the different programming languages.

Programming languages

The AFBasic project offers various Unit and EM templates and examples implemented in different programming languages.

The user can choose which implementation to copy from for his application according to his programming preferences.

Folder Description

U1_Unit1 Programmed in LAD

U1Em0_General Programmed in LAD

U1Em1_Template_LAD General logic programmed in LAD, sequencer programmed in LAD

U1Em2_Template_SCL General logic programmed in LAD, sequencer programmed in SCL

U1Em3_Example_LAD General logic programmed in LAD, sequencer programmed in LAD

U1Em4_Example_SCL General logic programmed in LAD, sequencer programmed in SCL

U1Em5_MotionDemo Example of how to split motion calls in standard cycle and motion cycle

Table 6-4: Overview of used programming languages

PLC Software Architecture

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 62

6.10. Software design principles

6.10.1. Passing data via block interface vs. direct global access

Programming schema

In PLC software design, two implementation schemata are common:

• Connect global data (inputs, outputs, data blocks) in the highest level of the block hierarchy and only use the block

interfaces to pass signals to lower levels

• Connect global data (inputs, outputs, data blocks) also in lower levels directly from the source without using the

block interfaces

Both schemata have pros and cons:

• Schema 1 (using block interfaces):

Advantages Disadvantages

Better reusability of functions and function blocks, as they
are fully encapsulated.

Limited functionality of cross-references.

Can be fully versioned. Lower comfort when drag-and-dropping tags from one block
to another (e.g. control node variables into sequences).

 Usability for programmers during debugging and
commissioning is decreased

Table 6-5: Pros and cons of using exclusively block interfaces to handover data

- Schema 2 (using direct access to input and data blocks):

Advantages Disadvantages

Easy jump to exact data source possible, via “Go to
definition” tooltip. No chasing through interfaces necessary.

Reduced reusability as tag calls inside the block might need
to be reconnected when a block is copied and called again
with other data.

Convenient drag-and drop of tags, as separate blocks can be
opened in spitted editors next to each other.

Increased risk of overwriting variables as they can be written
easily from different locations.

Table 6-6: Pros and cons of reading and writing to global data directly from each block

In summary, schema 1 enables a higher standardization. Automatic project generation as well as highly reusable

programs can be better realized that way. It is considered it is a higher level of good programming. However, the usability

for programmers during debugging and commissioning is decreased.

Schema 2 on the other side is a more basic programming style, easier to understand and debug, but higher effort the

adjust for new programs.

PLC Software Architecture

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 63

Realization in the AFBasic

The user can program using the AFBasic libraries following the one or the other schema. The AFBasic project was

programmed according to schema 2 to keep the AFBasic framework offering as general and simple as possible. Especially

the possibility to use the cross-reference functionality in TIA Portal dramatically increases the usability for the

programmer.

In the following it is described how the modules are programmed within the AF. Data coming from other folders are

passed via the block interface of FB “CallEquipment”. By connecting the data source of the other folder only at the highest

level, the Unit is fully encapsulated to another Unit. Data coming from blocks inside the same folder, is accessed directly.

The following figures the FB “CallEquipment” is connected to data from another folder. This data is passed into FB

“CallEquipment” through an InOut interface. The logic inside FB “CallEquipment” can use that data referring to the formal
parameters of the interface.

Figure 6-25: Call of FB “CallEquipment” in an OB “Main”

The following figure shows an FC inside FB “CallEquipment” with both schemata. The variables “emFeedback.isLinked”,
and “unitStatus“are read/write through the interface of FB “CallEquipment”. The InOut Parameters “hmiInterface” and
“localInterface” however are connected to local DBs inside the folder of the EM, but outside the FB “CallEquipment”, so it
accesses these DBs directly without routing through the block interface. It is directly pointing to the DBs “HmiInterface”
and “ControlNodes” in the EM. This direct variable link allows the user to jump to the program block directly via tooltip “Go
to definition”.

Figure 6-26: Call of FC “LAF_ControlEm” in a FB “CallEquipment”

PLC Software Architecture

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 64

6.10.2. PLC – HMI handshake

In the HMI development there are two ways to manage button press events between the HMI and the PLC:

• Set/Reset schema: HMI sets a PLC command bit, the PLC processes the command, finally PLC resets the command bit

• OnPressed schema: Only as long as the HMI command button is pressed the PLC command is set

Both architectures have pros and cons:

Set/Reset schema

Advantages Disadvantages

It is guaranteed that the PLC receives and processes the
command.

More complex programming, since the PLC must reset the
command, independently of the result of the command
execution

Better user experience for the operator: It does not matter
how long an operator presses the button or how long the
PLC needs, to execute the command, the command will be
executed eventually

Increased risk ending in a deadlock, e.g. if HMI set a
command, but PLC didn’t reset due to any unforeseen
circumstance (e.g. interrupt, failure, PLC stop/start, etc.). If
the same operator command is set, it will have no effect,
since no reset action of the command has been done.

Table 6-7: Pros and cons of Set/Reset schema

OnPressed schema:

Advantages Disadvantages

Simple to set up. Exists possibility that the operator presses the button and
nothing happens because he has not pressed the button
long enough for being detected by next PLC update cycle.

No risk of ending in a deadlock. If operator presses again,
command will be sent again.

If multiple commands come in parallel, there is a higher risk
of uncoordinated program execution.

Table 6-8: Pros and cons of OnPressed schema

In summary, Set/Reset schema enables a higher integration and standardization. It is considered as the most advanced

programming technique. However, it is more complex, and more scenarios must be considered to ensure a reliable

operation in all circumstances.

Realization in the AFBasic

The AFBasic can be programmed in both architectures. However, the AFBasic itself is realized with “OnPressed” schema, as

the main goal is to provide a general and easy to understand framework. The easy set up and the low coding complexity

increases the usability for the programmer.

HMI Software Architecture

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 65

7. HMI Software Architecture
The AFBasic project delivers a modular, customizable HMI Template for WinCC Unified, specifically designed to reduce

programming effort and streamline development. This chapter introduces the HMI layout and highlights reusable

elements such as the HMI header, intuitive page navigation, and ready-to-use plug-and-play application examples.

7.1. Screen Layout

A screen layout defines the arrangement and design of visual elements within a graphical user interface (GUI),

determining how different process screens are positioned and structured within the HMI. Effective screen layouts

significantly enhance usability, ensuring operators can quickly access and interact with relevant information and controls.

The starting screen layout is designed to offer an intuitive and user-friendly experience, considering visual hierarchy,

logical grouping of related elements, optimal space utilization, and a consistent, aesthetically pleasing design.

Use case

In manufacturing environments, operators require intuitive and clear interfaces to efficiently monitor process parameters,

control equipment, and quickly respond to alarms. An effective screen layout is essential to meet these operational

demands.

The AF screen layout serves as the HMI’s starting screen and is structured into six distinct sections, ensuring organized
information display and easy operator interaction:

Figure 7-1: Screen layout

HMI Software Architecture

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 66

Section Name Description

1 Header Permanently visible section containing key information: PLC name, current screen name, memory-
card status, PN-connection, date/time, and PLC checksum.

2 AlarmLine Displays the most recent active alarm, enabling operators to quickly identify and respond to issues.

3 MainNavigation Provides access to 11 predefined navigation areas: Overview, State Model, Manual, Messages, Shift
Model, Production Data, Energy, CM Info, Diagnostics, Web, Settings, and User Operation. (For

details, see Section "Navigation," Chapter 7.3)

4 SubNavigation An additional customizable navigation layer positioned at the bottom of the screen for quick access
to specific functions.

5 ThirdNavigation A customizable navigation layer located on the left side, offering supplementary options for
enhanced usability.

6 Application Central screen area displaying application-specific elements such as menus, I/Os, graphics, and
control tags relevant to the process.

Table 7-1: Description screen layout

Figure 7-2: Screen layout of AF

Sections four, five, and six are implemented as dedicated WinCC Unified pages, loaded dynamically when the starting

screen is opened. The remaining sections (one, two, and three) are integrated directly into the starting screen layout and

programmed as part of its core structure.

HMI Software Architecture

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 67

7.2. Header

The header prominently displays essential information such as power status, current state, and operating mode of the
selected units. Additionally, it provides quick access for operators to control and interact directly with these units.

Figure 7-3: HMI layout

The following visual elements are in the “header”:

Element Name Description

1 Company Name Placeholder for inserting a dedicated company name.

2 PLC Name Displays the PLC name derived from the PLC’s Identification &

Maintenance/Plant designation data.

3 Current Screen Name Indicates the current screen name via the “Show Title” script.

4 HMI-PLC Connection Status /

PLC Operation Mode

Visualizes PLC and HMI connection status, indicating conditions such as

"PLC Stop" or "No Connection between PLC and HMI."

5 SIMATIC Memory Card Status Provides detailed status of the SIMATIC memory card, including total size,

used memory space, and lifetime utilization metrics (percentage of

service life consumed).

6 PROFINET Diagnostic Summarizes diagnostic information of connected PROFINET devices,

enabling quick identification of network or device issues.

7 CRC Check Checksums for standard PLC blocks, safety PLC blocks, and PLC text lists

are monitored. Any detected changes from previous checksums trigger

dynamic SVG visualization.

8
Current Date & Time

Displays current date and time settings. (Further details in the chapter

"Settings.")

HMI Software Architecture

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 68

Element Name Description

9 Power On/Off Allows centralized activation or deactivation of actuators via main power

circuit breaker. Commands toggle a PLC bit (true/false), customizable by

PLC programming.

Figure 7-4: Power On/Off

10 Mode and Mode Commands Indicates the current operational mode of selected units. If multiple units
with different modes are selected, "Various" is displayed. Modes can be
changed via pop-up. Green indicators show active modes among selected
units. Button properties (visibility, activation, control permissions) are
managed by FB "HmiHeaderManager" in the PLC.

Figure 7-5: Mode Commands

HMI Software Architecture

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 69

Element Name Description

11 State Command Provides pop-up access for issuing state commands to selected units.

Command availability depends on current mode, state, and state machine

configuration, managed by FB "HmiHeaderManager" in the PLC.

Figure 7-6: State Commands

12 Select Unit Shows the current mode and state of units, allowing selection of
individual or all units. Actions triggered via the header apply exclusively
to selected units.

13 State Displays the current operational state of selected units. If multiple units

with varying states are selected, "Various" is displayed.

14 Special Functions Enables additional customizable machine operations via operator-

triggered requests. Button labels can be modified in WinCC text lists;

visibility and control permissions configured via the "HMI" DB in the PLC.

Figure 7-7: Special Functions

HMI Software Architecture

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 70

Element Name Description

15 Current Logged-In User Displays currently logged-in user. Clicking the user icon opens a
login/logout dialog depending on the current authentication status.

Figure 7-8: Log off.

16 Acknowledge Button to acknowledges all pending alarms.

17 Alarm Line Shows the most recent alarm event. Selecting the Alarm Line opens the
Alarm Screen.

Figure 7-9: Global Scripts – Alarms.

Table 7-2: Elements in the header

HMI Software Architecture

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 71

7.3. Navigation

Monitoring parameters, controlling actuators, and accessing machine data represent just some of the essential functions

that operators perform through the HMI. To ensure user-friendly and efficient operation, a standardized navigation

concept with clearly defined navigation levels has been developed, providing consistency across all screens.

Navigation within the HMI is structured into three distinct levels (see Figure 7-1).

• Main Navigation (AF screen section 3) → “00_ScreenLayout/ScreenLayout”

• Sub Navigation (AF screen section 4) → “00_ScreenLayout/SubNavigation”

• Third Navigation (AF screen section 5) → “00_ScreenLayout/ThirdNavigation”

The Main Navigation provides direct access to primary functional areas. If additional categorization or further details are

necessary, the Sub Navigation layer is used. For scenarios requiring even deeper subdivisions, the Third Navigation layer

can be implemented. While the main navigation is always visible, visibility for sub and third navigation layers is

dynamically adjustable according to operator requirements.

7.3.1. Main navigation

The main navigation consists of two parts: a permanently visible icon bar, and a text-based menu accessible via the
burger menu. Both navigation views provide direct access to the essential HMI features included by default in the AF HMI
project.

Figure 7-10: Main navigation

HMI Software Architecture

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 72

Technical description

The AF main navigation is pre-configured with default names and graphics corresponding to essential HMI features. Both

the displayed texts and graphics, as well as the associated main screens shown in section 6 ("swContent" screen window),

can be customized within Engineering System (ES). Each navigation element (icons and text boxes) triggers an event that

loads the corresponding screen into section 6 when selected by the operator.

To modify or reassign the screen linked to a particular navigation item, simply adjust the corresponding event in the ES.

The main navigation elements are defined in the screen 00_ScreenLayout/ScreenLayout: navigation icons reside on Layer

7, and navigation texts are placed on Layer 6 (see image below).

Figure 7-11: Main Navigation – Screenlayout Layer 6 & Layer 7

HMI Software Architecture

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 73

7.3.2. Sub navigation

The sub-navigation extends the main navigation by providing additional navigation options within each central function.
It enables operators to navigate efficiently through multiple screens associated with the same main navigation item. Each
central function can have its dedicated sub-navigation configured accordingly.

Figure 7-12: Sub navigation – Diagnostics example

Technical description

The sub-navigation functionality addresses two distinct scenarios: Central Functions and Units/Ems:

• Central Functions: The sub-navigation items for central functions are pre-configured, with defined values and events

that correspond directly to each main navigation category.

• Units and EMs: Sub-navigation entries for Units and EMs are dynamically generated during runtime (RT) according to

specific project configurations, as the number of Units and EMs may vary between projects. Consequently, AF provides

a single dynamic sub-navigation template for Units and EMs.

This dynamic behavior relies on PLC constants and HMI Text Lists, allowing the sub-navigation to update values

automatically for each Unit and associated EM. Specifically, the "SubEm" navigation screen dynamically reflects the

configured number of EMs per Unit through dedicated PLC constants linked to Unit Instance DBs (CallUnit_DB) and

associated HMI tags (UnitXEmNum, such as Unit1EmNum, Unit2EmNum, etc.). These tags reside within their respective

HMI Tag tables: U1, U2, U3, and U4.

The configuration for these dynamic values takes place in the PLC constants, as illustrated in the following figure:

Figure 7-13 PLC Constants – Unit 2

The displayed names in the sub-navigation are dynamically configured using specific HMI Text Lists (U1Em, U2Em, U3Em,
and U4Em). Similarly, the displayed values in the SubUnit navigation screen are dynamically managed through another
dedicated HMI Text List (Units).

Figure 7-14 HMI Textlists to dynamize SubUnit and SubEMs Screens

HMI Software Architecture

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 74

7.3.3. Third navigation

The third navigation level, located on the left side of the AFBasic screen layout, provides selection of application-specific

content displayed in Section 6 ("Content Screen"). It follows the same conceptual approach as the sub-navigation,

allowing dynamic configuration. Additionally, both sub-navigation and third navigation are synchronized when navigating

among Units and EMs, ensuring consistent screen views regardless of the selected navigation method—whether via sub-

navigation, third navigation, or graphical navigation within Section 6.

The third navigation can contain multiple navigation levels for specific screens, such as Home and Drives. Other screens

typically utilize a single-level navigation structure.

These levels are the following:

• General level or Unit level

• EM level

• CM level

Figure 7-15: Third navigation

HMI Software Architecture

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 75

7.3.4. Unit navigation

The Unit Navigation provides operators with multiple methods to visualize and manage the various units within the

system. Depending on user preferences, units can be navigated using:

• Application Section: Graphical navigation offering a comprehensive visual overview of all available units.

• Sub Navigation: Standardized navigation to easily switch between units.

• Third Navigation: Additional standardized navigation option for unit selection.

Application section – Unit Navigation

Within the Application section, operators can directly select a specific unit to view its associated EMs. Navigation across
EMs and CMs is also accessible through this graphical interface, as illustrated in the following example images:

Figure 7-16: Unit Navigation – application section

HMI Software Architecture

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 76

Figure 7-17: EM – application section

Figure 7-18: Control Module – application section

HMI Software Architecture

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 77

SubNavigation & ThirdNavigation – Unit Navigation

Sub Navigation and Third Navigation both offer a standardized method for navigating through Units, EMs, and CMs.
Operators can easily switch between different units by selecting the appropriate navigation buttons. The navigation
structure for Units, EMs, and CMs follows a consistent design concept across both levels.

Button labels displayed during runtime (RT) are dynamically generated using predefined HMI Text Lists (Units, U1Em,
U2Em, U3Em, and U4Em) and PLC constants. This approach ensures that navigation labels and associated values adapt
dynamically to the current configuration.

The following images illustrate how these navigational elements appear on the HMI panel:

Figure 7-19: Unit SubNavigation and Unit ThirdNavigation

Figure 7-20: EM SubNavigation and EM ThirdNavigation

HMI Software Architecture

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 78

7.3.5. General Navigation Commands

HMI navigation includes three additional commands to navigate through the screens. The operator can switch from

one screen to another, using the following commands: Previous, Up and Next.

• Previous: Navigates back to the previously displayed screen.

• Up: Moves up one navigation level, applicable specifically within Unit, EM, and CM screens (e.g., from CM to EM, or

from EM to Unit).

• Next: Navigates forward to the next screen in the previously visited sequence. (Note: the Previous command must be

used at least once beforehand).

Figure 7-21 HMI General Navigation Commands – Previous, Up and Next

7.3.6. HMI project tree navigation

The project tree navigation reflects the previously described navigation types, maintaining a consistent organizational

structure across screens and HMI tags. The following image illustrates this structured approach:

Figure 7-22: Project Tree structure – Screens and HMI tags

HMI Software Architecture

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 79

7.3.7. Scripts for generic Sub and Third Navigation

The main purpose of generic navigation scripts for Units and Equipment Modules is to simplify their management and

accelerate their integration within the HMI project.

Navigation Scripts in the "Scripts Modules":

Previously "hard-coded" navigation scripts have been standardized as global scripts. This approach ensures simpler

maintenance, improved debugging, and faster implementation in the project. These scripts are available in the global

scripts directory under the Navigation folder.

Figure 7-23: Scripts for the navigation in the Scripts folder

Using Navigation Scripts for Units

Navigation scripts are directly assigned to buttons associated with specific Units. To implement, simply import the script

as a system function and assign the corresponding Unit number as a parameter:

Figure 7-24: Script as system function for the Unit’s Sub Navigation

HMI Software Architecture

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 80

Figure 7-25: Script as system function import for the Unit Third Navigation

For detailed instructions on configuring and managing new Units, refer to Chapter 9.9.

Using Navigation Scripts for Equipment Modules

Navigation scripts are assigned directly to buttons associated with Equipment Modules. The script is being used and
assigned to the corresponding EM number as a parameter (everything is prepared to not have to touch anything in the script. It
dynamically changes depending on the number of EMs that we have in the proper Unit):

Figure 7-26: Script for the Equipment Module Sub Navigation

HMI Software Architecture

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 81

Figure 7-27: Script import for the Equipment Module Third Navigation

For detailed instructions on configuring and managing Equipment modules, refer to chapter 10.15.

HMI Software Architecture

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 82

7.4. Machine Overview

The Machine Overview screen represents the highest-level visualization of the machine within the HMI. Because the

AFBasic project supports multiple units, this overview provides operators with a clear summary, including status indicators

for active errors (e), warnings (w), and informational messages (i) for each unit.

The HMI screen structure follows the ISA-88 standard, organized in a hierarchical, tree-based architecture. Clicking on any

unit navigates down one level to display the detailed view of its associated Equipment Modules (EMs).

Figure 7-29: Example machine overview

HMI Software Architecture

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 83

7.5. Operation lock mechanism

When multiple HMIs are available to control the machine, it’s essential to ensure that only one HMI can operate the
machine at any given time. This functionality is implemented using the Operation Lock mechanism.

Concept

By default, all HMIs initialize in a locked state, displaying the Lock Screen until operational control is explicitly granted.

Figure 7-30: Operation lock

When the machine is powered on, all connected HMI devices display the Operation Lock sidebar window. To gain control

of the machine, the operator must press the "Request access" button.

The Operation Lock indicates whether the current HMI has control rights. If no HMI or a different station is currently in

control, the operator can request operation. When another HMI sends a new request, the previously active HMI is

immediately interrupted and loses its control rights—though this behavior can be customized if needed.

Technical description

In the screen “00_ScreenLayout”, the overlay screen “swLock” is configured with the highest priority (layer 31) to cover

the entire display area when active.

When the “Request access” button is pressed, the following values are assigned to internal variables of the HMI:

• @ServerMachineName → 00_Screenlayout\Hmi_operationInterlock\commands\“ServerMachineName”.

• @LocalMachineName → ' 00_Screenlayout \Hmi_operationInterlock\commands\"LocalMachineName".

The visibility of “swLock” is controlled by a script triggered by PLC tags:

• " Hmi.operatorInterlock.commands.serverMachineName "

• " Hmi.operatorInterlock.commands.localMachineName "

These PLC tags are linked to the HMI panel’s internal tags @ServerMachineName and @LocalMachineName. When the
operator requests control, the HMI updates these tags with its own identity, gaining exclusive operation access. All

other HMIs are then locked, as their names no longer match the central PLC control values.

HMI Software Architecture

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 84

During testing or commissioning, it is possible to disable the “swLock” function. To do so, the PLC variable
“Hmi.operatorInterlock.commands.serverMachineName” must be overwriten with the WString “OFF”.

NOTE
The recommendation is to do it only manually via TIA Portal online. Do not change the start value.

Figure 7-31: OperationInterlock data structure in the DB Hmi in the Folder Central Functions

Central Functions

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 85

8. Central Functions
Central Functions exist in the PLC and the HMI. In the PLC and HMI it is represented by a folder. The folder structure and

folder numbering inside “General” is aligned between the PLC and the HMI, to easily find related folders. This chapter of

the documentation explains both the PLC part and HMI part.

Central Functions contain system wide functionality which affect the entire system or are hierarchically above the unit

level.

Figure 8-1: Overview of “Central Functions” in the PLC, HMI and side bar of the HMI

8.1. General

In the PLC, the folder “General” contains functionality that is system related and/or valid for the entire PLC.

These are:

• Reaction to a connected SIMIT simulation

• Global Acknowledgement

• Global Power On/Off

• Connection to Main Header on the HMI

• Read local PLC date and time from CPU clock

• Clock bit generation

• Time synchronisation with NTP

Figure 8-2: Content of folder “General” in the PLC

Central Functions

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 86

In the HMI, there is no folder “General” in “Central Functions”, as the PLC functionality is related to the HMI main header in

the screen “ScreenLayout”.

Figure 8-3: HMI main header

The HMI header displays the most global information: Power status, current mode and state of the unit. It also allows the

operator to send commands to switch the power status, mode and to send commands. Additionally, special functions

could be selected as well as a global acknowledge command.

The main header in connected to the DB “Hmi”. FB “LAF_HmiHeaderSingleUnitManager” handles the data flow between
the HMI and the unit. It can handle multiple panels and one single unit. Depending on the unit status (current mode and

state) in the HMI, the button appearance and value displays (mode, state) are aggregated in the PLC from the unit and

send to the HMI. FB “LAF_HmiHeaderSingleManager” handles all that. It coordinates multiple HMIs with a single unit.

8.2. Overview

The overview folder in the HMI contains pop-ups that are used in the machine overview screen. The AF provides two pop-

ups:

• InterlinkControl : Enables the user to link and unlink an equipment module from the unit.

• InterlinkControl_NonUnlinkable : Information box that the equipment module cannot be unlinked.

In the PLC, the functionality related to these pop-ups is handled within the FB “CallEquipment” of the equipment modules.

Central Functions

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 87

8.3. Parameter

In the parameter screens various use cases of configurations, e.g. commission settings, recipes, etc. can be implemented.

In the AF project the screen uses the WinCC Unified "Parameter set control" object.

The parameter control is a comprehensive function for the control of parameter sets for configuration engineers,

operators and recipe creators. The parameter control brings you the following benefits:

• You can apply the structure of a user data type for one or more parameter set types.

• You can change the structure of one or more parameter set types automatically via a new user data type version.

• You can exchange a large number of parameters manually or automatically between HMI device and PLC to set up a

machine for a production.

• You can create parameter sets simply and uniformly for products to be manufactured in the works during engineering

or during ongoing operation.

• By structuring the associated parameters/setpoints, you can easily transfer parameters.

Figure 8-4: Parameter set control

For more details, please have a look into the Documentation for WinCC Unified - Creating and
configuring parameter set control

https://support.industry.siemens.com/cs/document/109821886

https://support.industry.siemens.com/cs/document/109821886/wincc-unified-creating-and-configuring-parameter-set-control?dti=0&lc=en-WW

Central Functions

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 88

8.4. Manual Operation Lines

In the manual screens, various use cases for manual operating CMs can be implemented. For this, the AF introduced the

Manual Operation Lines, a straightforward solution with high custom ability to control a CM with two buttons and display

the information about end switches and/or values like current speed and position. An example of a manual operation line

can be seen in the following image:

Figure 8-5: Example of Manual Operation Lines

There are mainly two use cases for using the manual operation lines:

• Using the prepared generic screen “LAF_ManualOperation1_1280x800”, here the user can get an overview of the
CMs. This solution is simpler to use, when adding new CMs, since most of the HMI architecture is ready-to-use in the

AF.

• Using the faceplates in a custom screen, this solution needs more work, since the prepared features need to be added

manually to the screen to function properly.

NOTICE
Json files on WinCC Unified Basic Panels

The Manual Operation Lines do need Json files to work. In the WinCC Unified Basic Panels there is no
App to move the files from a USB Stick to the Panel. So in this case the chapter How to use Json files
Add-In must be followed.

8.4.1. Main configuration concepts

This chapter introduces the necessary configuration elements for the Manual Operation Lines. A detailed step by step

example can be found in the following chapter How to implement Manual Operation Lines

Global DB for all Manual Operation Lines

For internal usage of Manual Operation Lines a global DB named “LAF_InternalManual” with an
Array[0..”NO_OF_HMI_PANELS”] of “LAF_typeManHMIDisp”, has to be created. A configuration is not necessary because
the Automation Framework project works with one HMI: hmi[0] (the array size determines this).

Equipment module DBs

Following the AF programing recommendation each EM should have a dedicated DB for each CM being operated with

Manual Operation Lines. A corresponding template DB “ManualOperationControl_Template” can be found in the “Central
Functions” Software Unit under the folder “03_ManualOperationLines”. The data structure contains three elements:

• The EM configuration “manualOperationEm” of type “LAF_typeManEm”

• The array “manualOperationEmArea” of type “Array[1..<X>] of LAF_typeManOperationArea” with X as the number of
areas the Manual Operation Lines are being grouped

Central Functions

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 89

• The array “manualOperationCms” of type “Array[1..<Y>] of LAF_typeManOperation” with Y being the number of CMs
in the EM

With the “manualOperationEm” only the “equipmentModuleNum” configuration needs to be set. The
“equipmentModuleNum” has the identification values of the EMs. Since the EMs are part of a Unit, it is recommended to
use the second and third digit from the right for the EM number and the fourth and fifth from the right for the Unit

number. For example, the EM 2 in Unit 3 in the Area 5 has the value “3025”. Since the datatype is <UInt> the maximum
value should not exceed 64999 (Unit: 64, EM:99., Area:9)

For the “manualOperationEmArea” the only setting for each area in the array to be set is the “displayedLines” of type
<string>. The string can be configured such that various combinations of Manual Operation Lines in that area can be

configured. For example, to display lines 1 to 6 use the format ‘1-6;’. To do sorting using commas, for example ‘6,5,1,8’ to
display CMs in the order 6 -> 5 -> 1 -> 8. If there are more than 6 CMs for one area, there will be a page up and down in

the “LAF_ManualOperation1_1280x800” screen.

For the “manualOperationCms” the only configuration is the number of CMs by setting the array size.

Textlists

The text lists have two different functionalities:

• The color configuration for the manual lines

• The area names for the EMs

The text lists for the colors have the format “LAF_manualColor<X>” with X being number for the selection in the Json files,
like “LAF_manualColor1”. The color text lists have a fixed format for the values being 1 – normal state, 2 - pressed, 3 -

confirmed, 4 – deactivated and 5 - deactivated+pressed, and the color values are set in the Text with the hex code. The

first two digits of the hexcode after “0x” are the transparency setting, being “ff” for 0% transparent and “00” for 100%, and

the last 6 digits are the normal color hex code.

The text lists for the area names have the format “EquipmentAreas_<X>” with X being the equipment area code, like
“EquipmentAreas_3020”. This Text list is used for the screen “LAF_ManualOperation1_1280x800” so that the areas shown
in the following image have the respective text depending on the EM:

Figure 8-6: Area names for each EM

Json Files

A Json file is needed for each control module/manual operation line. Each Json file has the information about the name,

value unit, amount of end switches, button colors, end switches activation and deactivation colors, names for each end

switch and name for the control screen (see Figure 8-10). Up to three different texts (symbolic, electrical or mechanical)

can be configured in a Json file, allowing different texts to be displayed when a manual operation line is touched during

the display of a message.

The format of the Json file name is “<X>_<Y>_<Z>.json” with X as the EM number, Y as the line number and Z as the
Language Code. An example of Json file name would be “3020_1_1033” for line 1 of EM 3020 with the language English
(defined by the Locale ID standard as 1033).

The Json file needs to be added to the PC Runtime or panel and the path where it needs to be placed is configured in the

HMI Tags as “manualOperationFilePath”.

• When using the manual operation lines for simulation and Unified PC runtime, the Json files must be manually copied

into the configured path inside the HMI Tag “manualOperationFilePath”.

Central Functions

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 90

NOTE
Path Convention: When using a Windows PC Runtime path strings must include additional escape
characters like the following: “D:\\JsonFiles\\” (double backslash).

• On the other hand, if the manual operation lines are to be used on a real Unified panel, the Json files need to be

transferred using the Json files Add-In. The files will be automatically copied from the path <<locally saved TIA Project

folder>>\UserFiles\jsonfiles to the configured path inside the HMI Tag “manualOperationFilePath” when the download
is done. More information on chapter How to use Json files Add-In.

NOTE
Path convention: When using a Unified Panel, the path should be “/home/industrial/JsonFiles/”
without the additional escape characters.

FC Calls

For the use of the Manual Operation Line there are two FCs mandatory:

• “LAF_manEmConfig” and

• “LAF_manOperationCm”

The following configuration is necessary for:

• LAF_manEmConfig

The three structures of the EM configuration DB (“manualOperationEm”, “manualOperationEmArea”,
“manualOperationCms”) introduced in the beginning of this chapter, must be connected to the FC “LAF_manEmConfig”.
Additionally, the DB “LAF_InternalManual”, used for the screen Data must be connected to the FC to manage the

“LAF_ManualOperation1_1280x800” screen. The following image shows an example of such configuration.

Figure 8-7: Block: “LAF_manEmConfig“ configured for EM 2 of Unit3

• LAF_manOperationCm

Central Functions

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 91

With the “LAF_manOperationCm” the variables used for the CM control are connected. Each CM must be connected to
only one “LAF_manOperationCm” FC. All FC inputs are described in the block documentation but in the following
examples for some basic functionality:

Input(s) Description

“rightEndPosSens<X>” and
“leftEndPosSen<Y>”

Feedback from the process about end switches being On or Off

“execRightCmd” and “execLeftCmd” Control the CM’s hardware like a physical button

“cnfrmExecRightCmd“ and
“cnfrmExecLeftCmd“

Feedback that the command is being executed

“expandable“ Open the screen windows for the specific control node. The screen that will be
open needs to use the name “ControlScreen_<X>_<Y>“, with X as the EM number
and Y the line number.

…

Table 8-1: A selection of “LAF_manOperationCm” inputs

Central Functions

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 92

Figure 8-8: Configuration example of “LAF_manOperationCm“ for Manual Operation Line1 in EM2 of Unit3

HMI Call for main view

The manual operation screen is generic so that the main view does not need additional screens to be created. To open the

main screen “LAF_ManualOperation1_1280x800” with the correct equipment module, the global script
“LAF_getEquipmentModule” under the “ManualOperation” needs to be used. As shown in the following image, the

“LAF_getEquipmentModule” first parameter is the number of the equipment module, and the second parameter is the
screen window path that should be used to open the screen.

Central Functions

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 93

Figure 8-9: Example HMI call for manual operation lines screen call

In the Figure ,the equipment module number 1050 is defined under the equipment modules DB

“ManualOperationControl_U1Em1” with the parameter “equipmentModuleNum” from the variable “manualOperationEm”.
The screen window path is set to “.” since the screen window opening the manual operation screen should be used, but in
case a screen window in a layer higher or lower should be used, it is also possible to do. For Better visibility it is

recommended to use the ScreenLayout’s screenWindow “swContent”.

Central Functions

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 94

HMI Line screens

Additional to the normal view, it is also possible to create specific expandable line screens to be open for specific lines as

shown in the following image:

Figure 8-10: Example expandable manual operation line screen

To configure a screen for the line X of an equipment module YYYY, a screen located in the folder “LineScreenWindows”
with the name “Template_ControlScreen_YYYY_X” is created and in the PLC, the "LAF_ManOperationCm" for line X has the
input “expandable” set to true. To open the screens, the screen windows “controlX” in the screen
“LAF_ActvInst1_1280x800” are used.

It is recommended for the line screen to be the same size as the screen window. For the 1280x800 resolution, the screen

size 1194x180 is recommended.

Central Functions

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 95

8.4.2. How to implement Manual Operation Lines

The Manual Operation Lines are implemented in the AF project in the main navigation under manual operations.

In the AF project all library blocks for the Manual Operation Lines have been added into the folder

“04_ObjectsOfProjectLibraryUsed - LAF - 10_Central – 03_ManualOperationLine - PLC”.

As they are part of the main navigation bar, in the AF Basic project, the Manual Operation Lines have been configured in

the folder “01_CentralFunctions - 03_ManualOperationLines” where the lines are called.

Figure 8-11: Blocks programmed for the Manual Operation Lines

Base configuration

The “CallManualOperationLines_UnitX” FC is created to call the following blocks: the “LAF_manEmConfig” for each EM and
“LAF_manOperationCm” blocks for each line that is required to be configured as explain in the previous chapter.

The connections for the FCs in the “CallManualOperationLines_UnitX” are done through DBs. Each EM has a DB for the
configuration, the areas configuration, and the CMs. Each ManualOperationControl DB has the Unit number and EM

number as extension, and are located in folders with the name of the Unit they belong to. The following image shows

how one of the DBs, for EM5 of Unit1 was configured. The changes from the templated are highlighted in the red:

• number of the EM with the correct nomenclature (1050).

• number of lines to be displayed for each area, here two lines in the first area.

Figure 8-12: Manual operation DB configuration example U1 EM5

Central Functions

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 96

Connecting the CMs

After the configuration of the DB, the connections are added to the blocks inside “CallManualOperationLines” FC,

connecting several of the inputs to the corresponding control node DB of the EMs. For example, in the case of Line1 of

EM5, Unit1, the connections are the following:

• The inputs “cnfrmExecRightCmd“ and “cnfrmExecLeftCmd“ are used to get the feedback, that the “button is being
pressed” and the PLC got this information.The simple implementation is to connect directly to the “jogForward” and
“jogBackward” variables coming from the “commands” section of the HmiInterface.

• The inputs “fieldDevAckLeft“ and “fieldDevAckRight“ are the acknowledgement of execution from field device and
it is connected to “Em5_HmiInterface.cmPosAxis.monitoring.jogBackward” which also comes from the HmiInterface DB of

the EM5 cylinder when the monitoring to jog Backward has been activated.

Figure 8-13: Closer look to inputs configured in “LAF_manOperationCm”

Once all the configuration blocks of the EM and the blocks for each line are set up in the “CallManualOperationLines”, the
implementation of the Manual Operation Lines in the PLC is completed.

Central Functions

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 97

HMI implementation

The HMI tags are configured trough the predefine table called "03_manualOperation", located in the “HMI tags –

CentralFunctions” folder; establishing the connection with the corresponding PLC tag that will come from the DB
"LAF_InternalManual” and which will show the data from the HMI interface.

As it was mentioned in chapter 8.4.1. in the HMI tag table is where the path for the json files needs to be specified. The

tag to be modified is “manualOperationFilePath”, and the path should be specified in the Properties>Values (see image 8-

15). Since the project uses a Unified Panel, the path value would be “/home/industrial/JsonFiles/”, but as shown in the
image below, the initial path was set to “D:\\JsonFiles\\” for testing in the simulation. When downloading to a Panel, the
loaded event of the “ScreenLayout” screen changes the json file path automatically to “/home/industrial/JsonFiles/” to
facilitate the testing.

Figure 8-14: HMI Tag “manualOperationFilePath” configuration

As next step, the text lists need to be added. There will be two different kinds of text lists that affect the use of the

Manual Operation Lines in the AF Basic project:

• “EquipmentAreas“ text lists : need to be configured for each EM with the corresponding name. For example, in
the “EquipmentAreas_1050” text list the areas are configured as in the image below:

Figure 8-15: “EquipmentAreas_1050” text list

Central Functions

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 98

• “LAF_manualColor” text lists : They are text lists from 0 to 16 which contain as text, the colors used in the Manual

Operation Lines faceplates as a hexadecimal value. These text lists are needed to transform the colors that are read from

the json files.

Figure 8-16: Manual Operation Lines text lists needed in the AF Basic project

In the following step, the scripts for the Manual Operation Lines must be added to the HMI project. There is a folder

named 'ManualOperation' that contains the main scripts used within the project screens. The remaining scripts are

typified scripts that will be automatically included or updated when the LAF project library is updated.

Figure 8-17: Manual Operation Lines scripts

Central Functions

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 99

The screens for the Manual Operation Lines need to be created. In this case, they have already been created in the

“03_Manual” inside the “01_CentralFunctions” folder. In the following step, the focus will be on setting up the
“LAF_ManualOperation1_1280x800”.

This screen contains the tabs for the different areas (which access to the corresponding text list by using a script to get

the area number) and a main screen window that will open the “LAF_ActvInst1_1280x800” screen.

Figure 8-18: “LAF_ManualOperation1_1280x800” screen

• “LAF_ActvInst1_1280x800” : This screen contains the faceplates for the Manual Operation Lines, in the position
they should appear. Each one of the faceplates should be configured to connect through the interface to the HMI tags

that will display the needed information in the manual line. In the next image an example is shown of the interface

configuration for line0 (which would be the first one to appear in the screen and its connected in the HMI tag table to the

line 1 of the DB in the PLC):

Figure 8-19: Interface configuration for faceplate of the Manual Operation Line 0

Central Functions

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 100

In the last step the Json files are used to render the Manual Operation Lines. Without the files, the faceplates would

appear completely blank in the screen. The mandatory information is the line name, the unit, the number of end

switches, the button colors, the end switches colors, the control screen name and the end switch names.

The json files for each Manual Operation Line must be stored in the folder specified in the HMI tag

“manualOperationFilePath”, in the case of the Framework Demo is “C:\\JsonFiles\\”. There, the json files must be named as
“<X>_<Y>_<Z>.json” with X as the EM number, Y as the line number and Z as the Language Code. The structure of the

json file must follow the example in the next image (the number of End Sensors can vary up to maximum of eight Right

End Sensors and eight Left End Sensors):

Figure 8-20: Example of Json File structure for Line 1 of the EM5 in the Unit 1 (1050_1_1033.json)

NOTE
The TIA Portal project contains a *.json-file helper (Excel-Sheet called
ManualOperationLine_EXCEL_to_JSON_Helper) to generate the json-files automatically in the path. For
more details see folder <<TIAPortalProjectPath>>\UserFiles\jsonfiles

Central Functions

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 101

8.4.3. How to use Json files Add-In

As mentioned earlier in Chapter 8.4.1, there is an add-in called "JsonAddin.addin" available at the path <locally saved TIA

Project folder>\UserFiles\jsonfiles, which allows the necessary Json files to be directly copied to a real Unified panel so that

the manual operation lines in the Automation Framework Basic can function correctly.

Figure 8-22: Location of Json files Addin

NOTE
In case support is needed on how to use an Add-in in TIA Portal, here is the Siemens support link for
Add-ins: SIOS-ID:109773999

First, the Addin must be activated in the section of TIA Portal for Addins as it can be seen in the next figure:

Figure 8-23: Json Addin activation requirement

Once Addin is activated, a full compilation of the software in the Unified Comfort Panel is needed to start with the process

(the Json files will be copied after the compilation but if the user re-compiles again without launching the Addin the Json

files will not be copied anymore).

https://support.industry.siemens.com/cs/document/109773999/tia-add-ins?dti=0&lc=en-US

Central Functions

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 102

After the compilation, select the Addin with right click on the Unified Comfort Panel: Json Addin>Manual operation>Copy

Json files.

Figure 8-24: Addin execution steps

After launching the Addin, a message will appear reminding that a compilation of the project is required before executing

the Addin. As the first step has been doing a full compilation, it can be clicked on “OK”. If everything has gone correct,
another message should appear announcing “Copy of Json files completed”.

Last step would be downloading to device where the manual operation files should already be visible. It can also be check

if the Json files have been copied correctly inside the panel by going to the path “/home/industrial/JsonFiles/”.

The copying of the JsonFiles is done in the Loaded event of “ScreenLayout” with the script “LAF_Copy”.

Central Functions

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 103

8.5. Messages

The “Messages” has two sub menus. The first one handle current alarm/messages viewer and the second opens the

historical alarm viewer. This last one shows the alarms saved in the “Alarm History” log.

8.5.1. Alarms

The current alarms and warnings can be shown via the Button “Messages” of the Main-Navigation. To view the Alarm

History, use the appropriate Button in the Sub-Navigation. Messages are displayed with the WinCC Unified “Alarm
Control”.

With the button "Alarm History" you can display the archived messages. The system diagnostics messages are also

displayed.

Figure 8-11: Alarms in Menu “Messages”

Central Functions

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 104

8.6. Diagnostics

Various predefined, ready-to-use diagnostic screens are being implemented in the AFBasic. The following chapter

introduces the different diagnostic implementations.

8.6.1. System diagnostics

The AFBasic provides an integrated system diagnostic solution in the HMI, this allows the commissioning engineer,

operator, maintenance and service personal to get a fast diagnosis of several PLCs and the connected PROFINET IO-

Systems.

To show the “System diagnostic” screen navigate to “Diagnostics” (1) and “System diagnostics” (2) in the HMI. The WinCC

Unified object “System diagnostics control” is used to show the diagnostic status of several PLCs using traffic light SVGs.

The diagnostic status contains the overall status of the relevant PLCs. The merged state is always the worst state of all

PLCs. The “Diagnostics view” shows the diagnostic buffer of the selected PLC with the diagnostic event including event

text and timestamp. Use the buttons (3) to update and select different diagnostic events as well as to show detailed

information of the diagnostic event.

Figure 8-12: System diagnostics (Diagnostic view)

NOTE In terms of usability, it is recommended to navigate between several PLCs via the “Matrix view” of the
“PROFINET diagnostics” (for details see PROFINET diagnostics).

For detailed documentation regarding the WinCC control object “System diagnostics control “,
refer to the online documentation in TIA Portal or have a look in the WinCC Unified manual:

https://support.industry.siemens.com/cs/ww/en/view/109828368

https://support.industry.siemens.com/cs/ww/en/view/109828368

Central Functions

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 105

8.6.2. PROFINET diagnostics

In addition, the AFBasic provides a detailed status diagnostic information of the PLC and their lower-level hardware

components of the PROFINET IO-System in the HMI. To show the “PROFINET diagnostics” screen navigate to “Diagnostics”
(1) and “PROFINET diagnostics” (2) in the HMI.

The functionality is implemented with the “Distributed IO view” of the WinCC Unified object “System diagnostics control”.
Each hardware component is displayed as a tile. Detailed information about the diagnostic status is retrieved by clicking

on the relevant tile (3). Navigating through the individual hardware components is based on the network topology and is

also possible by clicking on the tiles.

If only one PLC with a PROFINET IO-System is configured, the “PROFINET diagnostics” screen will show the “Distributed IO
view” by default. Otherwise, the WinCC Unified object “System diagnostics control” changes to “Matrix view” during
runtime. The “Matrix view” is also retrievable via the “Start page” button (4) which allows switching between several PLCs

and PROFINET IO-Systems very user-friendly.

Figure 8-13: PROFINET diagnostics (Distributed IO view)

Central Functions

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 106

8.6.3. Interface Signals

8.6.3.1. Overview

Industrial automation systems frequently require monitoring numerous discrete (Boolean) process signals for diagnostics,

status indication, and operational feedback. These signals originate from devices such as light barriers, limit switches,

pressure sensors, and any other process signals. Within the AFBasic environment, a specific mechanism exists to facilitate

the monitoring of such signals on an HMI. This mechanism involves selecting relevant signals during the engineering

phase, configuring them within the PLC, and visualizing their status on the HMI during runtime.

The LAF_ReadBoolSignals and LAF_ReadWordSignals FC blocks serve as the core component enabling this functionality.

These blocks are called within CallInterfaceSignals FB as shown on Figure 8-16: Call LAF_InterfaceSignals under

Engineering section. The blocks read signals connected as inputs (signalLeft00 through signalLeft15 and signalRight00

through signalRight15 for the LAF_readBoolSignals) and (signalsLeft and SignalsRight as WORDs for the

LAF_ReadWordSignals). Each interface block represents 32 Boolean signals which can be monitored on a single screen.

To efficiently manage multiple signals and optimize HMI visualization, each logical "interface" representing 32 Boolean

signals is implemented using two consecutive WORD elements in the input interface for the LAF_ReadWordSignals and 32

input Booleans for the LAF_ReadBoolSignals, see Architecture. The LAF_Interface blocks process these inputs and

produces two separate WORDs, designated as "signalsLeft" and "signalsRight" HMI interfaces so the HMI can display the 32

signals on two separate windows "left" and "right" per page.

The corresponding WinCC screen is prepared for 16 datasets that can be navigated from "Page 1" to "Page 16", the

number of pages can be configured as per the user requirements, see Engineering on how to configure the amount of

pages to display. Each dataset contains 32 Boolean signals represented on a page split into two sides, see the figure

bellow, "Left Page side"(1) and "Right Page side" (2), 16 Boolean signals are displayed on either side.

The displayed variables page is responsive to the selected page in the third navigation (3), allows the user to have a better

overview of all configured 16 pages

The Status of each signal Bool is written cyclically on the PLC and displayed on the pages with an indicator light (4).

• Green indicator light for an active/ON signal.

• Lite grey for inactive /OFF signal.

The Symbolic names are pre-configured through Text lists on WinCC (see Engineering on how to configure the text lists)

and are displayed on the pages with texts (5).

Figure 8-14: Diagnostic screen for the interface signals

Central Functions

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 107

8.6.3.2. Architecture

The monitoring system architecture is designed to convert individual Boolean signals into a compact WORD-based format

for processing by the LAF_ReadWordSignals and LAF_ReadBoolSignals blocks. These WORD values are later unpacked back

into Boolean signals for representation on the HMI.

The structure defined in the global DB InterfaceSignalHmi (see the figure bellow), located in the Diagnostics folder under

the InterfaceSignals subfolder(1), serves as interface to the HMI and contains a primary member: "diagStatus" (2).

Figure 8-15: Interface Booleans Structure

“diagStatus” is of type LAF_typeInterfaceSignalsHmi, containing six members: screenActive, selectedPage, pageValid,

numberOfPages, signalsLeft, and signalsRight. Each serves a specific function in the operation and visualization of the

interface signals:

• screenActive (BOOL): Enables the LAF_ReadBoolSignals and LAF_ReadWordSignals blocks to start processing the

configured signals only when the “Interface Boolean” window on the HMI is active.

• selectedPage (USINT): Specifies which configured "page" is selected by the operator, allowing the system to process

and display the correct set of signals for the page.

• pageValid (BOOL): Tracks if the selected page on the HMI is also configured on the PLC. True = Valid, False = Invalid

• numberOfPages (DINT): Stores the count of configured pages. The user configure the value of this tag as per

Figure 8-17: Configuration of amounting pages(2) under Engineering subsection. It is then sent to the HMI to indicate

how many interface pages are available for visualization.

• signalsLeft and signalsRight (WORD): Each WORD represents a set of 16 Booleans that can be displayed on either the

left or right side of the active page on the HMI respectively.

Central Functions

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 108

8.6.3.3. Engineering

To configure the monitoring of interface signals on HMI, the following procedures need to be followed.

• Call FC "LAF_ReadBoolSignals" or FC "LAF_ReadWordSignals", depending on the signals format of the user. The AFB

“CallInterfaceSignals” FB already contains 16 Networks, each with either FC "LAF_ReadBoolSignals" or FC
"LAF_ReadWordSignals", the user then have to call their prefered ‘Read Signals’ block by enabling the block by
removing the coil “TO_DO_REMOVE_TO_CALL_THIS_BLOCK” on the “EN” of the block interface, see the figure bellow
(1).

• Connect the interface Signals selected tobe displaced on the HMI, signals to be displayed on the left screen of the

page are connected on the “signalLeft#” block interface (4) and signals to be displayed on the right screen of the page
are connected on the “signalRight#” block interface (5) . If the signals are Booleans, then FC "LAF_ReadBoolSignals" is
called (2) and if the signals are WORD formatted, then FC “LAF_ReadWordSignals” is called (3).

Figure 8-16: Call LAF_InterfaceSignals

Central Functions

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 109

• On the user constants of the “Diagnostics” under PLC tags, see the figure bellow (1). configure the amount of
configured datasets / pages by entering the correct configured amount (2). This amount determines the number of

pages can be navigated on the HMI Interface boolean window.

Figure 8-17: Configuration of amounting pages

• To configure the symbolic names of the interface signals to be displayed with the status as mentioned on Overview,

the user needs to navigate to “LAF_Interface#” Text list for the page they want to display the configured Boolean
signals, under “Text and graphic lidts”, (see the figure bellow (1)), on the WinCC, for each page (Represented by
“LAF_Interface#” (2), there are 34 text list entries, with entry 1 to 16 reserved for Left signal Bools (3), entry 17 to 32

reserved for Right signals (4) , and entry 33 and 34 reserved for for Left and Right dataset descriptions respectively (5).

The configuration example on the bellow figure, produces the results displyed on Figure 8-14: Diagnostic screen for

the interface signals under the subsection Overview.

Figure 8-18: Interface Boolean text configuration

Central Functions

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 110

8.6.4. Enhanced Interface

The Enhanced Interfaces are set up in the project to deliver to the final user another option of having in a dynamic

environment the parameter control to be more flexible. Here is how they are implemented in the project.

• The UDTs are created for the different things that you want to display (PLC data types). Remember to make them

HMI accessible, writable and visible.

Figure 8-19: Enchanced Udts

• Types are created in the library out of the PLC data type:

Figure 8-20: Library Udts for the Enhanced

Central Functions

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 111

• The corresponding DBs are created. Remember to make them HMI accessible, writable, visible.

Figure 8-21: DBs for Enhanced

• The corresponding tags in the HMI are created:

Figure 8-22: Tags for the HMI Enchanced

Central Functions

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 112

• Tags [int] are created and called "JobID+n" and "ParameterID+n" for each of the displayed UDTs.

Figure 8-23: Names for the Enhanced jobs

• Parameter set type is created:

- Select the UDT

- Select the tag

- Select the control tags

- JobID+n

- ParameterID+n

Figure 8-24: Parameter set for the Enchanced

Central Functions

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 113

Figure 8-25: Parameter set settings for the Enhanced

• Textlists are created for the resource list (IMPORTANT: Number in the textlist = ID Parameter Set Type)

Figure 8-26: Text lists for the Enhanced

• The screen and the schedule task are implemented already in the project.

Figure 8-27: Schedule Tasks for the Enchanced

Central Functions

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 114

8.6.5. Drive Diagnostics

The provided blocks and screens allow the commissioning engineer, operator, maintenance, and service personal a fast

diagnosis of technology objects (Axis) and SINAMICS drives in the HMI. The drive diagnostics includes status and control

information of TOs and SINAMICS drives, as well as messages for faults and warnings of the SINAMICS. Furthermore,

diagnostic information about the positioning status of the basic positioner (EPOS) functionality for SINAMICS drives are

available.

Figure 8-28: HMI navigation and drive diagnostics screen layout

To show the drive diagnostics screens navigate to “Diagnostics” (1) and “Drives” (2). Then select the relevant drive via the
third navigation (3). With the navigation bar (4) the essential information for each drive diagnostics are displayed in the

main screen. Detailed status information is retrievable via pop-ups (5).

8.6.5.1. Overview

The drive diagnostics consists of three main parts. Data blocks are used to store configuration data and as interface to the

HMI. Function blocks read out the diagnostic data and edit it to a visualization format. Screens show the diagnostic data

in the HMI in a clear and structured layout. Each HMI screen is linked to a function block in the PLC. The following table

provides an overview of all blocks and screens:

Block Functionality Screen

DB “DriveDiagConfig” Configuration data array of all drive objects for
drive diagnostics.

-

DB “DriveDiagHmi” HMI interface for drive diagnostics. -

FC “LAF_SetDriveObjectConfig”
(optional)

This block sets the configuration data of a drive
object in the configuration data array
depending on the parameterized index and
input values during PLC startup.

-

Central Functions

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 115

Block Functionality Screen

FB “LAF_GetAxisStatus” This block reads diagnostic information of an
axis depending on the configured technology
object and the selected drive object index in the
HMI by the operator.

“AxisStatus”

FB “LAF_GetSinaStatus” This block reads PROFIdrive telegram status
word 1 (ZSW1) and control word 1 (STW1) as
well as setpoint and actual speed values from a
SINAMICS drive via acyclic communication
depending on the configured type of SINAMICS
and the selected drive object index in the HMI
by the operator.

“SinamicsStatus”

FB “LAF_GetSinaAlarms” This block reads faults and alarms of a

SINAMICS drive via acyclic communication
depending on the configured type of SINAMICS
and the selected drive object index in the HMI
by the operator.

“SinamicsAlarms”

FB “LAF_GetSinaEpos” This block reads EPOS positioning status
information as well as setpoint and actual
values from a SINAMICS drive via acyclic
communication depending on the configured
type of SINAMICS and the selected drive object
index in the HMI by the operator.

“SinamicsEpos”

Table 8-23: Drive diagnostics blocks and screens

Central Functions

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 116

8.6.5.2. Architecture

The architecture is explained using the “SinamicsEpos” screen and “LAF_GetSinaEpos” function block as an example.

The operator selects the relevant drive via the third navigation in the HMI. By doing this, the “DriveObjectIndex” is set. The
“DriveObjectIndex” and the active “SinamicsEpos” screen information (1) is transferred to the PLC via the data block
“DriveDiagHmi” (2). The function block “LAF_GetSinaEpos” (3) is enabled by the active “SinamicsEpos” screen. This
function block reads the configuration from the data block “DriveDiagConfig” (4) depending on the “DriveObjectIndex”. A
part of the configuration data is transferred directly to the HMI. The other part is used to establish an acyclic

communication to read parameters from a SINAMICS drive. The received parameters are formatted and then transferred

to the HMI (5) too.

The function “LAF_SetDriveObjectConfig” (A) sets the configuration for one drive diagnostic object in the data block
“DriveDiagConfig” during PLC startup.

Figure 8-29: Big picture of the drive diagnostics architecture

Central Functions

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 117

Configuration data

To make it as user friendly as possible for the application engineer, all drive diagnostics objects are configurated in one

place. This configuration is stored in the “DriveDiagConfig” (1). Each drive diagnostics object has its own array element
(2).

Figure 8-30: Structure of the configuration data block “DriveDiagConfig”

NOTE
To reduce system load, it is recommended to set the configuration of each drive diagnostics object
with the “LAF_SetDriveObjectConfig” function during PLC startup.

Central Functions

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 118

Each drive diagnostics object consists of the following tags:

Tag Description

referenceDesignator Name or reference designator of the drive diagnostic object that
is shown in HMI.

axisDB DB number of technology object. If no TO is used, set
“axisDB = 0. The following types of TOs are supported:

• TO_SpeedAxis

• TO_PositioningAxis

• TO_SynchronousAxis

• TO_ExternalEncoder

sinaType Type of SINAMICS drive. The type is required to read the correct
parameters from the SINAMICS. The following types of
SINAMICS are supported:

• 000 = NO TYPE only TO diagnostic information

(mandatory for TO_ExternalEncoder, optional for other TOs)

• 114 = SINAMICS G120 with TO or SinaSpeed

• 124 = SINAMICS S120 with TO

• 125 = SINAMICS S120 with EPOS

• 220 = SINAMICS S200 with TO

• 221 = SINAMICS S200 with EPOS

• 222 = SINAMICS S210 with TO

• 223 = SINAMICS S210 with EPOS

sinaHwID Hardware identification of the PROFINET IO device or PROFIBUS
DP slave to address the SINAMICS drive. In this case, the
hardware identification refers to the PROFIdrive telegram.

sinaDriveObjectNo A PROFIdrive device consists of one or more functional objects
according to the number of axes. Each of these objects
represents the functionality of an axis and is referred to a drive
object (DO). The drive object number for SINAMICS drives is as
follows:

• SINAMICS G120: single-axis, “sinaDriveObjectNo” = 1

• SINAMICS S120: multi-axis, see guide below

• SINAMICS S200: single-axis, “sinaDriveObjectNo” = 1

• SINAMICS S210: single-aixs, “sinaDriveObjectNo” = 1

Table 8-45: Configuration tags for one drive diagnostics object

Central Functions

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 119

To access the drive object number, open the “Device configuration” (1) of the SINAMICS S120. Then the drive object

number is shown in the “Device overview” (2) in collum “Drive object number” (3). This way works for every SINAMICS
drive.

In addition, the drive object number of a SINAMICS S120 multi-axis system is accessible via the PROFINET interface (4) of

the control unit (CU). Therefore, select the “Telegram configuration” in the properties (5). Then the drive object number is
displayed in the “Item” collum (6) too.

Figure 8-31: Access drive object number in SINAMICS S120 multi-axis system

Central Functions

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 120

HMI interface

The interface between PLC and HMI is the data block “DriveDiagHmi” (1). This block consists of three parts:

• HMI control tags as well as shared diagnostic data (2). These tags are used by all drive diagnostics blocks.

• Axis status information of the technology object (3) from the function block “LAF_GetAxisStatus”.

• Sinamics status information (4), which are filled by the function blocks “LAF_GetSinaStatus”, “LAF_GetSinaAlarms” and
“LAF_GetSinaEpos”.

Figure 8-32: Structure of HMI interface data block “DriveDiagHmi”

NOTE The “DriveDiagHmi” data block as well as the connection to the HMI tags and screens objects are
implemented in the preconfigured TIA Portal project of the AF.

Central Functions

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 121

PLC function blocks

The PLC functionality is implemented with the four function blocks “LAF_GetAxisStatus”, “LAF_GetSinaStatus”,
“LAF_GetSinaAlarms” and “LAF_GetSinaEpos” which are called in the function “CallDiagnostic” (1) and share the two data
blocks “DriveDiagConfig” and “DriveDiagHmi” (2).

To reduce system load, each function block in the PLC is enabled when the corresponding drive diagnostics screen in the

HMI is displayed. It is possible to disable the drive diagnostics function blocks from the user program by assigning a PLC

tag with value “FALSE” to the “enable” input (3). While this tag is “FALSE” no drive diagnostic data is read and transferred
to the HMI.

Figure 8-33: Function block calls for drive diagnostics

NOTE The drive diagnostics function blocks are called in the function “CallDiagnostic” and connected to the
“DriveDiagConfig” and “DriveDiagHmi” data blocks in the preconfigured TIA Portal project of the AF.

Central Functions

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 122

8.6.5.3. Engineering

During the engineering phase a few steps are must to be done to set up the drive diagnostic in the PLC and in the HMI. In

order to make it as easy as possible for the engineer, the tasks are reduced to set the configuration in the data block

“DriveDiagConfig” in the PLC program and to extend the third navigation in the HMI.

PLC engineering

First navigate to “Diagnostics” tag table (1) in the PLC tags. Select the “User constants” (2) and set the value of the
“NO_OF_DRIVE_OBJECTS” constant (3) to the number of technology objects and SINAMICS drives
(= drive diagnostic objects) in the TIA Portal project. Then compile the “DriveDiagConfig” data block.

Figure 8-34: Set number of drive objects for drive diagnostics

Example:

• 1x SINAMICS G120 with SinaSpeed

• 2x SINAMICS S210 with TO_PositioningAxis and TO_SynchronousAxis

• 1x SINAMICS S210 with EPOS

• “NO_OF_DRIVE_OBJECTS” = 3

In this example “NO_OF_DRIVE_OBJECTS” means the array contains 4 elements “[0..3]”.

Central Functions

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 123

Open OB “Startup” (1) in folder “CentralFunctions”. Call the function “LAF_SetDriveObjectConfig” (2) for each array
element of the “DriveDiagConfig” (3) and assign the array index (3) as well as the configuration array itself (4).

Figure 8-35: Call of function “LAF_SetDriveObjectConfig” in startup

Next assign the reference designator of the drive (1) and the DB of the technology object (2) via drag and drop as well as

the type of SINAMCS (3). For the type of SINAMICS predefined constants in the “LAF_DriveDiag_Constants” tag table are
available.

Figure 8-36: Assign reference designator, TO and type of SINAMICS to function “LAF_SetDriveObjectConfig”

Central Functions

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 124

Then open the “Device configuration” (1) of the corresponding SINAMICS and select the PROFINET interface (2) and
navigate to the “Telegram configuration” in the properties and select the “System constants” tab (3). Assign the system
constant of the PROFIdrive telegram (4) to the function “LAF_SetDriveObjectConfig” via drag and drop.

Figure 8-37: Assign system constant of the PROFIdrive telegram to function “LAF_SetDriveObjectConfig”

NOTE
The system constant must match the hardware identifier of the PROFIdrive telegram. Double check the
hardware identifier in the “Telegram configuration” of SINAMICS drive.

Figure 8-38: Access to the hardware identifier of the PROFIdrive telegram

Central Functions

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 125

Finally assign the drive object number to the function “LAF_SetDriveObjectConfig”. Therefore, open the “Device
configuration” (1) again and check the drive object number in the table of “Device overview” (2) and assign the value of

the drive object number to the function “LAF_SetDriveObjectConfig”.

Figure 8-39: Assign drive object number to function “LAF_SetDriveObjectConfig”

Central Functions

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 126

HMI engineering

The HMI screens for the drive diagnostics are preconfigured and dynamized depending on the configured technology

object and SINAMICS drive. Therefore, the focus of the HMI engineering is reduced on extending the third navigation. Via

the third navigation, the operator selects the relevant drive.

NOTE The navigation consist of three layers for unit level, EM level and CM level. This chapter describes the

tasks that are required to set up the drive diagnostics on the control module level. How to implement

the navigation in general is explained in chapter Navigation.

First navigate to “Text and graphic lists” (1) and extend entries for the text list “Drives” (2). The number of text list entries

must match the number of array elements “DriveDiagConfig” data block (3). Also, each value of a text list entry must
match the same index value of the configuration array.

Figure 8-40: Extend entries of the text list “Drives” in the HMI

Next add a drive name for each text list entry in the “Text” collum (1). These texts are shown on the navigation buttons in
the HMI during runtime (2).Recommendation: Use the reference designator for the text entry.

Figure 8-41: Add texts for drive diagnostics navigation buttons

Central Functions

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 127

The AFBasic provides 8 preconfigured buttons for the drive diagnostics navigation in the screen “ThirdDrives” (1). Only the

relevant buttons are shown in the HMI during runtime.

Figure 8-42: Preconfigured drive diagnostics navigation screen “ThirdDrives”

NOTE If 8 or less drives are used, no additional HMI engineering is required.

If more than 8 drives are used follow the next steps in this chapter to add up to 4 more buttons to the

drive diagnostics navigation. The steps are only shown for one button. If more buttons are needed,

repeat the steps for each additional button.

Central Functions

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 128

To add an extra button, copy the last of the preconfigured buttons and paste it below in the screen “ThirdDrives” (1).
Select the pasted button and navigate to “Text” in the properties (2). Then increment the value of the “DriveObjectIndex”
in the Java Script (3).

Figure 8-43: Button text dynamization for drive diagnostics navigation

Next navigate to “Events” (1) and increment the value of the “DriveObjectIndex” in event (2).

Figure 8-44: Button event for drive diagnostics navigation

Central Functions

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 129

Last navigate to “Expressions” (1) and increment the value of the “DriveObjectIndex” in the expressions for the

background color dynamization (2) and for the visibility (3).

Figure 8-45: Button background color dynamization for drive diagnostics navigation

NOTE The value of “DriveObjectIndex” must match the index of the array element in the data block
“DriveDiagConfig” for the three steps above. Double check the value for the Java Script, the event and
the expressions.

Central Functions

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 130

8.7. StateModel

In the HMI, this section contains screens to visualize the state model and the mode state history. More information can be

found in the chapter about units as well as in the documentation of the LUC (“Library of Unit Control”).

Figure 8-46: State model screen

Figure 8-47: State and mode history

Central Functions

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 131

8.8. Bookmarks

This feature allows the user to save up to two screens to directly jump to from the main navigation.

The current screen can be saved by clicking one empty star. When this is done, the name of the screen will appear next to

it, and the star color will be set to yellow. As shown in the following picture (1).

To delete the bookmark, click the cross that appeared when the bookmark was created (2).

Figure 8-48: Bookmarks

Central Functions

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 132

8.9. Settings

Settings are for general PLC information as well as specific TIA Portal project information. The following information is

available in four dedicated screens:

• PLC & HMI

• PLC IM (Identification and Maintenance)

• Checksums

• Show and change current date and time

PLC & HMI

The PLC & HMI screen provides information about the PLC cycle times (1). The current as well as the minimum and

maximum cycle time are displayed. A new reading of these parameters can be triggered via the button Reset (PLC/Safety)

Timers.

The predefined parameters in the PLC as well as the set communication load can also be displayed.

An evaluation of the SIMATIC Memory Card state is also presented, as well as Open the control panel button (2).

More information about the Memory Card Diagnostic can be found by pressing shift + F1 in your

TIA Portal Project on block “LAF_MemCardDiag”

Furthermore, the following WinCC Unified panel functions are implemented (3):

• Stop WinCC Unified Runtime

• Update trigger

• Switching Language

Figure 8-49: Settings PLC & HMI

Central Functions

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 133

PLC I&M

The Identification and Maintenance Data as well as the CPU network addresses are read once after a CPU warm start and

displayed in the screen below.

Figure 8-50: Settings PLC & HMI

More information about the PLC Diagnostic can be found by pressing shift + F1 in your TIA Portal
Project on block “LAF_PlcDiag”

Checksum

The block reads the checksums for PLC standard blocks (1) and for PLC text lists (2). The current checksums are compared

with the previous values / old values. For each deviation a ProDiag warning is issued, and the colors of the WinCC buttons

"Checksum"(SubMenu), "Ok Checksum" and "Settings" (Main Menu) are animated.

Central Functions

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 134

Figure 8-51: Settings Checksum

More information about the Checksum can be found by pressing shift + F1 in your TIA Portal
Project on block “LAF_Checksum”

Central Functions

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 135

Date and Time

The PLC time can be edited via the Screen Date and Time. This date and tine information is passed to the Software Unit

“CentralFunctions” → Program blocks → 14_Settings → CallSettings.

Figure 8-52: Settings Date and Time

Units

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 136

9. Units
This chapter describes the general structure, interfaces, commands, and data flow of units.

One unit is implemented in the AFBasic project:

• Unit 1: Example implementation programmed with LAD.

Figure 9-1: Unit and EMs implementation

9.1. General Structure

Each Unit consists of several folders. The first folder represents the unit itself. Additional folders represent each

equipment modules that are assigned to the unit.

Main program structure

• Handling of general releases and safety status.

• Mode and state management. This done by the evaluating the feedback of the EMs, reading the control interfaces,

pre-processing of the commands and the mode-state management itself.

• Internal Alarms are processed and managed.

Signal flow

The basic cyclic execution of unit commands starts with the assessment of the feedback obtained from the EMs and the

status of the unit itself. This evaluation is performed by the FB "LUC_StatusCollector". The outcome is the creation of a

current process interface. This interface is then evaluated together with the external control interfaces, such as

commands from an HMI, i.e. commands actuated by the operator, or external signals such as those from an IT system

(e.g. OPC UA) in the FB "LUC_InterfaceManager". The block generates a summary based on this information.

The FB “LPMLV2022_UnitModeStateManager” then evaluates the commands and sets the current mode and state.
Additional information of the state machine is written to the DB “Units” via the FC "LUC_SetModeCurrent", FC

“LUC_SetStateCurrent”, FC “LPMLV2022_UnitModeChangeAllowed” and FB “LUC_UnitStateCommandsAllowed”.
From DB “Units”, the EMs read the unit mode and state and execute their logic accordingly. The EMs then send their
updated feedback signals to the unit, which are then evaluated again in the new cycle.

Units

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 137

The overall signal flow of a unit can be seen in the following figure.

Figure 9-2: Signal flow of a unit

Units

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 138

9.2. Interfaces and blocks

The general program architecture of a unit is based on the description in the chapter Program Structure. To specify the

differences between the levels and the objects used, the following chapters describe in more detail the unit level and the

different approaches of the unit implemented within the AF Basic.

A unit contains the following blocks:

Figure 9-3: Program blocks of the unit

Primarily the blocks are used from the LPMLV2022 (PackML library) for the mode state manager, the LUC (Library of Unit

Control) for the supplementary signal handling within the unit and the LAF (Library of Automation Framework) to handle

the alarm management within the respective unit. To gain a more detailed understanding of how special blocks operate

at the unit level, it is necessary to investigate the specific implementation within a unit. This discussion will cover the

additional functionality beyond the basic operations already described.

OB Startup (Unit)

Configuration of the State-Model:

The user can adjust the state machine to his requirements. This is optional and only needs to be done if the user has a

different state machine like the standard OMAC PackML state machine.

In OB “Startup”, FC “LUC_StateModelConfig” transfers the user setting settings into the stateMode manager configuration
which are used by the state mode manager during runtime. In addition, information of the enabled modes and states are

provided to the unit interface through the FC “LUC_SummarizeEnabledModesAndStates”. The enabled special functions
configured in the “Config DB” are also provided to the unit interface in this OB “Startup”.

Units

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 139

OB Main

In OB “Main”, FB “CallUnit” is called, which contains the call of all further blocks and code. It can be seen, that data
from outside the own folder, e.g. from “Global” is handed over via the interface of FB “CallUnit”. Data within the own
folder is not handed over via the block interface, but handeled inside the block directly by using direct data block

access.

Figure 9-4: Implementation of OB Main of the unit

 FC CollectAlarms

This block is used for the alarm concept implemented within the Automation framework Basic. Further explanation of

how the block is used can be found within the chapter Diagnostics Concept under the section Alarm Implementation in

the PLC

DB Alarms

Contains alarms that can be configured by the used. They are evaluated by FC “CollectAlarms”.

DB Config (Unit)

In the unit DB “Config”, the following configuration setting can be adjusted by the user:

• Reference Designators of the relative and parent level

• Signal stack behaviour

• Configuration of which OPC UA methods are enables to control the state machine remotely

• State model configuration based on a OMAC PackML state machine

• Special functions enabled for the unit

Units

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 140

FB CallUnit

The function block FB “CallUnit” performs the followings actions:

Figure 9-5 Content of FB “CallUnit”

Control Unit Status

• Set unit simulation / Acknowledge / Disable alarms

If simulation, acknowledge or disable alarms is active on a global level, inherit this status and set active in this unit also.

Information is written to DB “Units”, from where it is distributed to the equipment modules.

• Acknowledge Safety / Safety released

If safety acknowledgement is required, the unit sends an acknowledge command to the safety program, if the state

machine is in the corresponding state or if an acknowledgment was set on the global level. The unit evaluates the safety

releases of the assigned safety zone and reacts accordingly. If a safety event occurs, an abort command is sent to the

mode state manager.

• Set special functions

Special functions commands to the unit are copied from the DB “HmiControlInterface” to the DB “Units”, so that all EMs
can inherit them an react accordingly.

Command Processing

• Disable state commands

The user can define preconditions to disbale state commands. This preconditions can be process variables, mode, states,

etc.

• Collect Alarms

Any event can be assigned to an alarm within the collect alarms function. This specific alarm is mapped to a reaction for

the unit (e.g. abort, stop, hold). More information on the process diagnostic within the AFBasic is given in chapter

Diagnostic Concept.

Units

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 141

• Summarize commands from alarms and events

This block summarizes commands from events, and alarms from DB “Alarms”. The alarms from DB” Alarms” can contain
reaction categories (e.g. abort, stop, hold) which are summarized here and sent to the unit as commands.

• Collect commands from the unit and EMs

Here the Collection of commands coming internally from the unit (unitFeedback) and commands and stateComplete from

all underlaying linked equipment modules (emFeedback) takes place. They then get Merged and forwarded to the FB

“InterfaceManager” as process commands.

• Merge commands interfaces

The different commands from all interfaces are evaluated and merged before they are sent as set of commands to the

mode state manager. These could be commands from the operator via HMI or IT, or state change request due to the

process status evaluation.

• Suppress commands

The summarized command will not be forwarded to the ModeState Manager if the command was previously disabled.

Mode and State Management

• Manage mode and state

This block represents the mode/state model of the machine. It always outputs the current mode and state of the machine.

It evaluates if a mode change request, state change request or stateComplete input is pending, and it then updates the

mode and state accordingly, if allowed.

• Update history and time statistics

• This block updates the mode and state history. When a mode or state change occurs, the current mode and state are

stored in the current data area of the history and the previous ones in ascending order. The runtime of the previous

mode and state of the unit is then evaluated by the “LPMLV2022_UnitModeStateTimes” block within the time statistics

network.

Update Interfaces

• Unit interface

Further signal handling of the mode state manager to interact with the data structure of the unit level.

• HMI control interface

• Update of unit status information to the Hmi control interface.

• Stack Light

This network sets the signal stack outputs according to the configuration and the current mode and state.

Units

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 142

9.3. HMI Screen

To access the overview screen of a specific unit, the operator has two options:

1. Select the unit directly from the main machine overview screen.

2. Use the navigation bar, which can be opened by clicking the icon in the bottom-left corner of the screen.

For simulation purposes, a Simulation Activation button has been added to the main overview screen.

Additionally, the collective status of the safety zones is visualized via a virtual E-Stop button. If all safety zones are

released, the button appears deactivated. If any safety zone remains active, the button is shown as activated—clearly

indicating that the system is not yet fully safe to operate.

Figure 9-6: Overall machine view

When a unit is selected, its corresponding overview screen opens, displaying the associated Equipment Modules (EMs).

An example implementation for Unit 3 is shown in Figure 9-8: Demo Unit 3 Overview Screen. In customer-specific

projects, this screen can be adapted to include tailored machine schematics or dedicated EM views.

Operators can access individual equipment screens either by clicking directly on the equipment within the overview

screen or by using the navigation bar, which also provides access to the EM level of the machine.

Units

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 143

The detailed structure of the Equipment Module screens is described in Chapter 10.3: HMI Screen.

Figure 9-7: Demo Unit 1 Overview Screen

Units

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 144

9.4. Mode and State Manager

The AFBasic uses the LPML library, which provides an implementation of an OMAC PackML V2022 compliant mode and

state manager including supplementary blocks. Additionally, the Library of Unit Control (LUC) is used for further related

mode operation tasks like command and status collection, and interface management to different command sources.

The Mode and State manager is called in the FB “CallUnit” of each unit. It is realized with the FB

“LPMLV2022_UnitModeStateManager” of the LPML library. For details about that block refer to the documentation of that

library. The main functionality of the block is to evaluate the requested Modes and States of external Interfaces, if a Mode

or State change could be done, and share the current Mode and State with other program parts.

Configuration

The Automation Framework is providing an easy way on implementing the needed configuration for the State Machine by

adding another data structure based on the PLC data type “LUC_typeStateMachineConfiguration” to the DB “Config” of the

unit. Therefore, there are two data structures inside this DB. One for the configuration of the user and one UDT which is

used by the “LPMLV2022_UnitModeStateManager”. The following parameters can be adapted to the user’s own needs:

• Used modes

• Used states per each mode

• Allowed transitions between modes

• States that are allowed to transition to the hold or complete process

The state model configuration can be defined by the user in “enableModes”, “enableStates”, “enableModeTransitions”,
“enableHoldCommand” and “enableCompleteCommand”. Each mode has its own configuration of states and transitions.

The configuration of the hold and complete command is independent from the current mode and defines which state can

transition to the hold or complete state.

Figure 9-8: Configuration of the state machine in the DB Config of the unit

To enable a new mode or disable old modes, the user can set the corresponding Bit within the “enableModes” variable.

The next step would be to define the states that are existent within the different modes. For this purpose, the

“enableStates” data structure is including every state as a Boolean variable for each mode. The “enableModeTransitions” is

defining in which state the mode could be changed. This data is structured in the same way, so every mode has the

transition activation for every state. Additionally, by setting or not setting the bits, it can be configured whether the

transition from a state to Hold or Complete is possible.

HMI Interface

The data of the Mode and State manager for the HMI is centrally stored in the DB “HmiControlInterface” of Global folder.

Each unit that was projected includes the data structure shown in the figure below. This interface enables the state

machine to be controlled via the HMI and the current status to be read out.

Figure 9-9: ModeStateManager Interface in DB “HmiControlInterface” in Global folder

Units

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 145

History and statistics

A history of the previous states and mode is also stored for each unit within the DB “Units” in the UDT “history” of the
specific unit. The last 8 steps of the state machine are provided. The FB “LUC_UpdateModeStateHistory” (called in FB

“CallUnit”) updates that history upon each mode or state change.

A time statistic of all mode and states is stored in the UDT “modeStateTimes". This provides a detailed overview of the

times the state machine has stayed in the individual modes and states. The FB “LMPLV2022_UnitModeStateTimes” (called

in FB “CallUnit”) updates that statistic constantly.

Screens

The mode and state of the unit can be controlled through the HMI by utilizing the mode and state command buttons (See

the pop-up windows below) located on the main header. The Mode Requests section allows for the selection of the

overarching operational mode of the equipment, dictating the available procedures and the level of automation. The

available modes are:

• Production: The standard automated operating mode.

• Maintenance: A mode that allows the user to access specific functions for service, calibration, or repairs.

• Manual: A mode that permits direct operator intervention and control over individual CMs.

The State Commands provide the means to govern the procedural execution within the selected mode, adhering to the

state model. The commands include:

• Core-Commands: Start, Stop, Reset, and Clear for fundamental control over the operational cycle.

• Execution Management: Hold, Suspend, Complete, and Abort to manage the progression of a batch or process. Hold

initiates a controlled pause, Suspend brings the machine to a shutdown state that can be resumed, Complete finalizes

the current operation, and Abort terminates all activity immediately and requires a reset.

• State Resumption: Unhold and Unsuspend are used to resume operation from the corresponding paused states,

bringing the unit back into an active condition.

Figure 9-10: Mode Request and State Commands pop-ups

Units

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 146

From the main navigation bar located on the right side of the HMI, as indicated on the figure below, the user can access a

dedicated screen to monitor the machine's state model. Activating the designated icon (1), as highlighted in the figure

below, opens the Machine State view (2). This screen presents a graphical representation of the configured state

machine, illustrating all possible states (e.g., Idle, Starting, Execute, Held, Stopped) and the transitions between them for

the currently selected operational mode. The active state is visually emphasized to provide an immediate understanding

of the machine's status.

Figure 9-11: State model view

Furthermore, this interface includes a History tab. Selecting this tab navigates to a detailed, time-stamped log of the state

machine's recent activity. As shown in the figure below (2), this historical view provides a chronological list of states,

recording the precise start time, end time, and total duration for each state entered. This functionality allows for in-depth

diagnostics and performance analysis of the machine's operational sequence.

Figure 9-12: History view

NOTE
The visualization of OMAC state model of the SIMATIC OMAC PackML V2022 library (LPML) \LPML\ was
adapted to comply with the AF Siemens style guide

Units

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 147

9.5. Stack light

Each machine typically has at least one stack light that indicates the machine status to the equipment operators. The

stack light in the AF supports the five standard stack light colors with the various illumination options (static or flashing)

and sufficient reserves for additional user defined colors plus on/off signal for acoustic indicators.

The following figure shows the implementation of a stack light mapped to the different states of the unit, implemented

within the AFBasic:

Figure 9-13: PackML State Model mapping to the stack light

The AFBasic offers a preconfigured implementation of such a unit stack light. This implementation is not arbitrary; it is

robustly designed in accordance with IEC 60073, which governs the principles for coding information using visual (lights)

and auditory signals and aligns with the OMAC guideline Part 6: PackML User interface - HMI.

The configuration of these stack lights is centralized within DB "Config", this DB allows for defining different signal

behaviors, primarily static (a solid light) and flashing. For each of these behaviors, the user can precisely determine the

status of each individual signal using a simple Bool true/false value. The available signals include a standard color palette

(red, yellow, blue, green, white), an audible horn, and additional user-definable signals (user1, user2).

For example, to configure the machine to display a flashing green light when the unit is in idle state, the user would

navigate to signalStack -> idle -> flashing and set the "green" variable to true as shown on the figure below (1).

NOTICE
Please have in mind that the stack light functionality has not been fully implemented in the AF
project. It was inserted as a suggestion. The image was implemented without stack light
symbols in the visualization.

Units

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 148

Figure 9-14: Stack light configuration in DB “Config”

Units

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 149

9.6. How to add a new Unit in the PLC

To add a new Unit, an existing Unit Folder can be used to copy and paste into the Program blocks folders, following the

numbering conversion as per Figure: 9-15, where Folders numbered 10 and above contain units and their associated

equipment modules, following a specific numbering format for clarity and ease of access.

The format is as follows:

First Digit: Represents the unit number.

Second Digit: Represents the equipment module number associated with that unit.

Example Breakdown can be the "12" in a folder named "12_Em2_Template_SCL" indicates:

Unit 1 (first digit = 1); Equipment Module 2 (second digit = 2). As an example, another unit called U2_NewUnit will be

added and two Ems to demo the numbering conversion.

• In the program blocks, go to PLC tags and select the Global PLC tag table. Within user constants tab, the following

steps have to be taken

Figure 9-15: Global PLC Tag list

• Increase NO_OF_UNITS by 1(1) so that is shows the highest value of the last unit within the whole machine.

• Add a new constant with the name of the additional unit and assign the next possible higher number(2).

• Copy an existing unit Folder of the AFB and paste it to the project by right clicking on the program blocks in the PLC

project tree and select paste.

• Rename the folder with a proper name and number following the conversion descussed on the General structure (see

Figure:9-15 below).

Figure 9-16: Adding new unit to program block’s structure

Units

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 150

• Open the OB “U#_Main” and OB “U#_Startup” Properties of the new unit (see Figure:9-16 below) and rename to the

applicable name of the Unit (1). Change the OB numbers of the OB "U#_Main" and "U#_Startup" (2) according to the

OB numbering convention presented in chapter: Startup and cyclic program execution

Figure 9-17: Properties of the new Unit OB

• Rename the rest of the blocks to reflect the newly added unit.

Figure 9-18: Newly added Unit block

• Open the "Config" (1) DB of the new unit and adjust the "referenceDesignator.relative" (2) to reflect the new unit.

Figure 9-19: Reference Designator adjustment

• Open the OB "Main" of the new unit and assign the user constant that was created in the Global Folder at the Move-

block that is called before the FB "CallUnit" is called

Units

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 151

• Assing the right Global interface for the unit, by connecting the corresponding interfaces to the “Data”, “Unit”,
“HmiControl”, “UnitEms”, and “UnitAlarms”.

Figure 9-20: OB “Main” of the new Unit

• Open the OB "Startup" of the new unit and assign the user constant that was created in the Global Folder at the Move-

block in Network 1: "Unit Index Number".

Figure 9-21: OB “Startup” of the new Unit

• The unit can then be configured as required.

Units

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 152

9.7. How to resize the HMI

For the resizing of the HMI to the desire panel size, you should follow the next steps:

1. Changing the Target Device

a. Navigate to the device settings within your project.

b. Select the desired device that matches the screen resolution or display size you intend to work with.

Figure 9-40: Selection of the “Change device/version” property of the HMI

Units

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 153

Figure 9-41: Selection of the desire device to make the resize

2. Resizing Screens to Match the Display

Once the target device is selected, you can proceed to resize the screens to fit this new display size. Follow these

steps:

a. In the project tree, locate the screens you wish to resize.

b. Right-click on the screen(s) and select the "Resize to Display" option from the context menu:

Figure 9-42: “Resize to display” property

Units

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 154

This option automatically resizes the screen dimensions to match those of the selected device. Most objects on the screen

will be resized appropriately, ensuring a consistent appearance across different resolutions.

3. Adjusting Faceplate Containers

While the screen and most objects will resize correctly, certain elements, such as faceplates, may require additional

adjustments:

a. The containers within the faceplates are resized automatically; however, the faceplate itself may not adjust in size.

b. To resize the contents within a faceplate, navigate to the properties panel of the faceplate.

c. Locate the option labeled "Fit Screen to Window" and enable it. This will ensure that the contents of the faceplate

scale correctly within the resized screen.

Figure 9-43: “Fit to screen window” property in the faceplate’s properties

4. Managing Static Size Values

Some objects or elements may have static size values defined by the user, which could prevent them from resizing

automatically. A common example is a navigation bar with a fixed width:

a. Identify any objects with static size values, such as width or height, particularly in navigational elements.

b. Remove these static values to allow the object to resize dynamically according to the screen dimensions.

c. Once the static values are removed, the objects should automatically adjust to fit the new screen size.

Figure 9-44: Static values removed in the scripts

Units

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 155

5. Final Adjustments and Testing

After completing the resize operations, it is recommended to review and test the screens on the target device. Ensure that

all objects, text, and navigational elements are appropriately scaled, and that the user interface remains functional and

visually appealing.

Equipment modules

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 156

10. Equipment modules
This chapter describes the general structure, interfaces, commands, and data flow of equipment modules.

10.1. General structure

An EM always consists of exactly one folder and is part of the structure of the command and data flow as well as the HMI

connection concept presented in chapter PLC Software Architecture.

The EMs are including specific CMs of the machine which execute the functionality the equipment module is specifying.

Main program structure

• On the EM level, the current linking status of the module itself to the Unit is first evaluated. What linking and unlinking

one EM from the Unit means will be discussed in the chapter Interlink .

• Next, the control module blocks representing the sensors are processed to obtain the status of the process inputs of

the equipment module.

• The EM next maps the different statuses from the Unit to different behaviours of the user programm or sequence,

which should provide the main functionality of the module. Therefore the functionalities can be devided into the job

control concept, which will be further presented in the chapter Job .

• The general evaluation of whether and when the CMs, that represent actuators, are reset and activated takes place

before the CMs are called.

• The module's alarms and events are processedSignal Flow.

• Finally, The feedback of the completion of the current state and the commands to the Unit will then be built.

General mode and state are coming from the unit level. This determines if the equipment level runs in automatic mode,
maintenance or manual mode. If manual mode is enabled, manual operation of the control modules, the job selection
and the sequence is allowed via the HMI. DB “HmiInterface” is connected to the according faceplates in the HMI screens.
The provided example sequence allows a manual continuous operation as well as step-by-step mode.

The mode and state of the unit are evaluated via the FC “LUC_InterlinkToParent” and “LAF_ControlEm”. Depending on the
linking state of the equipment module, either the unit signals are used within the EM or, if unlinked, the HmiInterface or
ControlNodes signals are used. The code of the FB “CallEquipment” is highly customer specific. The shown
implementations are just examples. In the AFBasic, multiple EMs with different ways of implementations are shown. I.e.
different sequences can be called depending on the recipe or job. Sequences can be programmed in LAD/FBD and SCL.

The sequence communicates with the control modules using DB “ControlNodes”. This has the benefit of high transparency
and flexibility. It is advisable to limit the number of direct connections between control module blocks and the sequence
and instead utilize the DB "ControlNodes" as a centralized data hub for process commands and status. Any customer
specific control module blocks can be programmed in a way, so that the commands and status are placed in the DB
“ControlNodes”.

Equipment modules

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 157

Signal Flow

Figure 10-1: Signal flow in an equipment module

Equipment modules

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 158

10.2. Interfaces and blocks

The main responsibilities of the equipment modules include:

• embedding the process logic into the system structure

• interface to the hardware level

To achieve these functionalities, the following settings and blocks are available in the folders that represents an

equipment module:

Program blocks

Also at the equipment module level, the general program architecture is based on the description in the chapter Program

structure. In order to clarify how the individual blocks work at the equipment module level, the following section will take

a closer look at the individual program blocks of an EM.

Figure 10-2: Program blocks of the equipment module

OB Startup (Em)

Within the OB “Startup” of the EMs the configuration of the reference designator and Axis data are set.

OB Main

In OB “Main”, FB “CallEquipment” is called, which contains the call of all further blocks and code. All data from outside the

own folder, e.g. from “Global” is handed over via the interface of FB “CallEquipment”. Data within the own folder is not

handed over via the block interface, but handeled inside the block directly by using direct data block access.

DB Alarms

Contains alarms that can be configured by the used. They are evaluated by FC “CollectAlarms”.

DB Config (EM)

The DB “Config” contains all configuration data of the EM and underlaying modules. That includes the configuration data

of the em reference designator, axis and control modules. Configuration is usually set once during commissioning and

not changed during operation of the machine. By saving this DB (e.g. export), the configuration of the EM has been

stored and can be easily imported in a new PLC.

DB ControlNodes (EM)

The DB “ControlNodes” hosts the runtime data of the EM itself, the sequence as well as the job data and variables to

control and monitor the CMs.

DB HmiInterface

At the EM level, all commands to and from the HMI are passed through the DB “HmiInterface”. It contains the same

objects as stored in the DB “ControlNodes” but provides the HMI interface values for these objects.

Equipment modules

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 159

FC StepToString

The function “StepToString” converts the integer value of the sequence steps into string variables. That increases the
readability. The function must be adjusted for each sequence according to the defined steps and step names.

FB Sequence

The main purpose of the EM level is to integrate the process logic. The FB “Sequence” hosts the sequential logic of the
module.

FB CallEquipment performs the followings actions

Figure 10-3: Content of FB “CallEquipment” based on the example of Em5 Motion Demo

Equipment modules

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 160

Block Info Header

This header is part of code2Docu, it serves as a quick reference for users to identify the block’s basic properties and
version tracking.

Description

This network provides a more detailed textual explanation of the block's functionality, purpose, and implementation

details. It serves as comprehensive documentation that would typically include detailed explanation of the block's

purpose, summary of its functionality, description of inputs/outputs and their purposes, special considerations or

operational notes references to related documentation or standards, dependencies on other blocks or systems, usage

instructions for maintenance personnel. This network does not contain executable code but is essential documentation

element that help users understand the purpose and functionality of the equipment module before proceeding to the

actual implementation code.

Interlink EM to Unit / Control EM

Before using the current unit mode and state, the EM evaluates if it is currently linked to the Unit or if an unlink command

has been set on the HMI or from the DB “ControlNodes”. This is handled by the “LUC_InterlinkToParent” block. If the EM is
unlinked, the Unit Mode and State can be simulated with the “LAF_ControlEm” block.

Control Modules (Sensors)

These networks are calling the CMs that evaluate the sensor values of the equipment module. The sensors and actuators

are separated to always have the newest values within the PLC cycle. The actual input values are evaluated, then

processed in the program and used to update the CMs of the actuators

Map Unit Status to Sequence Status

This network calls a function to set preconditions for the jobs and the sequencer of the equipment module based on the

current unit mode and state. For instance, when the manual mode of the unit is enabled, the job and sequence

management are set to manual mode as well. Additionally, the block has input bits to define the behavior of the job

management within different unit states. Each input therefore gives the possibility to configure if the current job should

be interrupted while the unit changes to the specific state or not. If the input signal is true, the job will be interrupted if

the specific unit state is activated.

Select Job

To separate the functionality of the EM a Job Management is added. Via several ”LAF_SelectJob” blocks a function is then

triggered during runtime. A detailed explanation is following in the chapter Job .

Set EM to initialized

This network is used to show an example of how the status variables of the equipment module could be processed. There

are also additional status bits which could be processed within this network or in additional networks.

In this example here, the equipment module is set to initialized, if the initialization job has been completed. Other jobs

could take that status as precondition for their own execution.

Call Sequence

After the evaluation of the job which should be executed the Sequence is then called. In this case a S7-Graph sequence.

The process of the step sequence is structured according to the job management.

Reset CMs / Enable/Disable CMs

The general evaluation of whether and when the CMs are reset, enabled and disabled takes place before the CMs are

called.

Control Modules (Actuators)

As mentioned after processing the step sequence the output of the actuators are evaluated with the specific CMs.

Determine StateComplete (SC) in Mode Production / Manual / StateComplete (SC) Summary

After the process logic and hardware have been processed, the feedback from the EMs is output. This is done by analyzing

whether the conditions are met in production or manual mode to send a State Complete to the unit.

Equipment modules

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 161

Collect Alarms

Any event can be assigned to an alarm within the collect alarms function. This specific alarm is mapped to a reaction for

the unit (e.g. abort, stop, hold). More information on the process diagnostic within the AF is given in chapter Diagnostic

Concept.

Trigger Commands from Events

Not all events need to trigger an alarm but trigger a command. Therefore, the user can define their events that trigger a

command to the unit without being assigned to an alarm.

Summarize Commands from Alarms and Events

This block derives commands from alarms and events. These bit alarms are processed and generate the corresponding

reaction (e.g. abort, stop, hold). These are handed over as commands to the status collector.

Determine StateComplete (SC) in Mode Production / Manual / StateComplete (SC) Summary

After the process logic and hardware have been processed, the feedback from the EMs is output. This is done by analyzing

whether the conditions are met in production or manual mode to send a State Complete to the unit.

Equipment modules

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 162

10.3. Hmi Screen

The equipment screens are fully customizable and should be tailored to the specific requirements of each machine. In this

demonstration, simplified example implementations are provided for the following Equipment Module: EM Motion Demo.

Figure 10-4: Equipment screen of EmMotionDemo

The equipment screen includes several faceplates that allow manual control and monitoring of key functions:

• Jobs

• Sequence

• Linking state, and—if the EM is unlinked—simulated unit mode and state.

• Control Modules

The faceplates for controlling sequence, jobs, and linking state can be accessed by pressing the hand icon located at the

bottom-right corner of the screen. This action opens a popup window, as shown in the following figure:

Figure 10-5: Manual Control Faceplates of the EM

Equipment modules

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 163

10.4. Interlink to unit

The AFBasic has the possibility to link and unlink equipment modules from the assigned Unit. This can be useful during

commission, when not all EMs should be integrated yet. Another use case is, that some machine could have redundant

EMs and the machine offers the possibility to take some EMs off, for maintenance or due to lower needed throughput,

e.g. a redundant infeed system.

If an EM is linked to the unit, the EM applies the unit mode and state and follows the unit.

If an EM is not linked to the unit, the EM does not follow the unit and doesn’t apply the unit mode and state. It is
disconnected from the unit and can be operated directly. If the EM if unlinked, the unit will not take the EM feedback into

consideration. The unit ignores the EM.

Figure 10-6: Interlink functions of an EM

The function "LUC_InterlinkToParent" allows the EM to link or unlink from the unit internally using the inputs "link" and

"unlink". Additionally, the operator can also establish or remove the connection through the hmiInterface by The DB

“HmiInterface” or from the DB “ControlNodes”.

The process of linking or unlinking is only possible when the parent, the Unit that contains the respective equipment

module, is in a certain active state. The "linkConfig" and "unlinkConfig" inputs allow the user to decide which states can be

enabled for linking or unlinking of an EM, respectively. Each state is represented by a bit inside the configuration, and the

OMAC enumeration is used for this representation (bit 0: Undefined; bit 1: Clearing; bit 2: Stopped; etc.). The default

value of these configuration parameters is 16#214, which enables the states of Idle, Stopped and Aborted for both linking

and unlinking of an EM.

Link an Equipment Module to a Unit:

Connect a logic to the input link or send a link command from the HMI or from DB “ControlNodes”.

Unlink an Equipment Module from a Unit:

Connect a logic to the input unlink or send a unlink command from the HMI or from DB “ControlNodes”.

10.5. Direct control

The function “LAF_ControlEM” evaluates if the EM is linked to the parent. If it is linked, it takes the “unitStatus” input and

copies the values to the output “unitStatusUsed”. That variable is used in the further logic of the EM. So, in case the EM is

linked, it fully applies the unit status to the EM.

In case the EM is not linked to the unit, only acknowledge from the unitStatus is applied to the EM. The mode, the state

and special functions can be controlled directly by the “localInterface” if “enModeStateCtrlByLocal” control interface is
enabled or by the operator through the “hmiInterface” if “enModeStateCtrlByHmi” control interface is enabled. That means

that any mode, state and special function can be given to the EM. In case both control interfaces are enabled, local

interface has priority than HMI. There is no state machine in the EM, so no automatic mode, state or special function

transitions are possible, the order of going through the states is completely flexible.

Equipment modules

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 164

With the direct EM control, it can be easily tested if the EMs perform the right jobs and tasks in the respective states. E.g.,

you can apply the state resetting and test the logic executed in that state.

Figure 10-7: Direct control function of an EM

10.6. EM – EM link

The EM within a unit exhibits interdependency in their processing workflow. Consequently, an internal signal exchange

mechanism can be implemented among the EMs. The DB 'Unit#Ems' serves as the central repository for this signal

exchange process. The interfaces between individual EMs are encapsulated within the "emRelations" data structure. The

figure below illustrates the DB structure used for the implementation of the "emRelations"

Figure 10-8: Structure of EM Relation signals

This structure is used to transfer signals between an EM and its corresponding EMs in a sequential production process. It

receives components from the source EM only after the source EM has completed its part of the production. Upon receipt,

it processes these components before delivering them to the destination EM. Depending on its operational state, it

activates signals such as "readyToDeliver" to the destination EM and "readyToReceive" to the source EM. Counter EMs can

respond to these signals by executing Delivery jobs when the destination EM is ready to receive and executing Receiving

jobs when the source EM is ready for delivery. This approach enables EMs to synchronize their workflows, ensuring that

each module processes its designated portion of the production sequence before forwarding the partially completed

component to the next downstream EM.

Additional signals play critical roles in this signaling framework:

• received: This signal indicates whether the EM has successfully received parts from its predecessor. It ensures that

processes can adapt based on whether the requisite materials are available.

• delivered: This signal informs the system that parts have been successfully delivered to the next EM. It allows

downstream processes to initiate once confirmation is received, ensuring a smooth workflow.

• handOverActive: This signal indicates whether the handover process is currently active. It helps coordinate the timing

and control flow during the transfer of parts between EMs, preventing conflicts and ensuring that the process adheres

to operational protocols.

Equipment modules

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 165

The figure bellow demonstrates the operation of “emRelations” between two Ems.

Figure 10-9: Example of EM – EM link application

Demo Em above updates the counter Em regarding the Em relation status. Depending on the application, the Em will

update the counter Em to indicate that it is ready to receive or deliver material (1). Additionally, the Em will utilize this

status from the counter Ems as conditions for selecting jobs (2). This applies in cases where an Em is executing a specific

task that ultimately requires handing over to a counter Em for further processing.

10.7. Job Control

To achieve a modular behavior of the EM, the different functionalities that could be provided by the equipment are

separated into different Jobs. A job could be e.g. the initialization of the EM or a part of the production process, such as

the transport of a produced object towards the next EM. The handling of these jobs is made by FB “LAF_SelectJob”. It
provides the control of one job that the EM could execute. Therefore, every job that was defined for the EM must have its

own “LAF_SelectJob” instance and a specific number (Job Number) in the user constants of the EM.

When the startCondition input of the FB "LAF_SelectJob" block is activated, the assigned jobNumber is transferred to the

EM sequence, and the corresponding job branch is initiated. Each job comprises a comprehensive set of steps designed to

execute a specific function. During these job steps, the interaction with the Control Module (CM) occurs, facilitating the

required operational sequence.

Equipment modules

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 166

Figure 10-10: Job Management of an EM

When using the block, the defined job number must be linked to the instance and it must be defined whether the job is a

singleCycleJob or not (True = job is executed once when the startCondition is fulfilled, False = job is executed cyclically

when the conditions at the startCondition input are fulfilled). Additionally, the parentReferenceDesignator of the EM

could be connected to include the blocks into the diagnostic concept of the AFBasic.

Figure 10-11: Call of the FB “LAF_SelectJob”

The interlock input prevents the execution of the specific job. An interlock could be e.g. a mechanical reason why the job

should not be carried out. E.g. the job of moving a robot to a transfer station could be interlocked when another robot is

at the same transfer station. This prevents a collision between the two robots.

The startcondition is the process condition, that is used by the program to start a job.

The hmiInterface In Out allows the operator to interact with the Job control of the EM, it consists of two primary

members namely: commands which allows the user to manipulate the jobs by setting a Job number to be executed when

the EM is unlinked from the unit, and status enables the job status of the EM to be visualized on the HMI through a sub-

member activeJobNumber the current active job number can be visualized, and manual control status on the jobs

Equipment modules

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 167

through the sub-member manualControlEnabled. The sequence InOut will then transfer the data to the specific points

within the PLC to share the sequence information through DB “ControlNodes”.

In addition, the status of the job is available for use on the output interface of the block through:

• readyToStart - When not in manual mode: Ready to start when startCondition and interlock are true and When in

manual mode: Ready to start when job is selected on the hmiInterface. startCondition and interlock irrelevant in that

case.

• startInterlocked - Job could be started but interlock is FALSE.

• active - Job is currently active in the sequence.

• completed - Job has been completed and no other job has started. As soon as another job starts, this variable is reset.

• aborted - The sequence has been initialized while this job was active. Thus, the job was interrupted and was not

completed. As soon as another job starts, this variable is reset.

10.8. Sequencers

There are Two different types of sequencers available in the Automation FrameworkBasic. Depending on the requirements,

a LAD or SCL sequence can be chosen. Both sequencers are implemented with at least one template and one example

implementation. The exact difference between the implementations is explained in the next chapter. The

Implementations can be found within the Group folders that are shown below.

Figure 10-12: Group Folders that contain the Template and Example EMs

The structure of the different equipment modules is all based on the explanation given earlier in this chapter. The only

difference is the Sequencer and the Jobs. Each sequencer follows the concept introduced in the Job chapter, where the

individual functions of the EM are divided into jobs. To provide the general function of the sequences and to implement

the architecture without further programming effort at the EM level, the Automation Framework Basic offers the

possibility to use a control and a monitor FB for each of the two programming languages mentioned above.

LAD

Within the function block of the sequenecer, two extra blocks, FB “LAF_ControlLadSequence” to the permanent pre-

instruction network and sets the sequence mode, initializes, holds and changes the sequencer to single step mode.

Equipment modules

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 168

The following figure shows the call of the block with the connections that must be made to map the signals of the DB

“HmiInterface” and DB “ControlNodes” to the function block.

Figure 10-13: Call of the FBs “LAF_ControlLadSequence” and “LAF_StatusLadSequence”

SCL

The concept of sequence and job handling also covers the SCL programming language. The implementations of LAD and

SCL is similar, as can be seen on the figure below. The interface connection for SCL is therefore the same as the one

shown for the LAD blocks.

Figure 10-14: Call of the FBs “LAF_ControlSclSequence” and “LAF_StatusSclSequence”

Equipment modules

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 169

Post Processing

The data structure of the Job control and the provided sequencers allow us to include additional information, which is not

already handled by the sequence blocks. Therefore, the equipment modules of the Automation Framework include two

additional networks for the purpose of post-processing status information related to the job and sequence execution.

These networks are called below the status blocks of the sequence. The following picture shows the call of the helper

functions that provide additional information. The function “StepToString” just converts the step number into a string.
Therefore, the block is called for the current, previous and next step.

Figure 10-15: Call of the functions for additional information of the jobs and sequence

10.9. EM-Template / Example

Technical description

The template and example equipment modules are blueprint EMs that show the main structure and interface and can be

used as a base to create own equipment modules. Within the Automation FrameworkBasic there are different Template

equipment modules provided depending on the programming language of the whole unit, the EM and the sequence of

the module.

The use case of the two EMs differs as follows:

• Em_Template: Contain only the mandatory blocks and calls. They are the base to start own equipment modules. One

template for each programming language.

• Em_Example: Contain a basic example of an equipment module. Each Em_Example contain four CMs and implements

one sequence example. All Em_Examples are designed to execute the same use case such that the user can easy

compare the different implemtation in the different programming languages.

Architecture

The basic structure of the EMs (like described in chapter Interfaces and blocks) is also adopted in the structure of the

example and template EMs. To get an overview of the differences between the individual EMs the following table shows

their content:

Equipment modules

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 170

Folder Description

U1_Unit1 Programmed in LAD

Em0_General Programmed in LAD

Em1_Template_LAD General logic programmed in LAD; sequencer programmed in LAD

Em1_Template_SCL General logic programmed in LAD; sequencer programmed in SCL

Em3_Example_LAD General logic programmed in LAD; sequencer programmed in LAD

Em4_Example_SCL General logic programmed in LAD; sequencer programmed in SCL

Em5_MotionDemo General logic programmed in LAD; sequencer programmed in LAD

Table 10-1: Overview about the template and example EMs

The EM Template could be used to start an own individual equipment module while maintaining the structure of the

project. In addition to the template EMs, the example EMs provide a more use case specific program with representative

CMs (2) and a sequence. The enhanced program of the function block “CallEquipment” is shown in the following figure.

Notice that the template EMs have no representative CMs (1) since it is just a template.

Figure 10-16: Comparison of a Template and Example EM

Equipment modules

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 171

The dummy CMs (2) are used in the FB “Sequence” to show how to build a sequence. In the sequence block, the steps of

the respective jobs are programmed, as well as the conditions for the individual steps. Each job is divided into different

steps. A step represents an action in the process e.g. filling water or moving a motor. In the example the jobs and the

steps are more generic, because of their purpose. A fully programmed sequence can be found in the Demo EM of the Unit

(chapter EM Demo Implementation – Motion Demo). The figure below shows the generic structure of an individual step.

Figure 10-17: Example for generic programming with step structure (Em5)

Interface function description

The DB “Config” provides a centralized point where the reference designator, axis and CM configuration can be made.

Furthermore, the interface of this EM is distributed to the DB “ControlNodes” as well as the DB “HmiInterface”. The DB

“ControlNodes” hosts the runtime data of the EM itself, the sequence as well as the job data and variables to control and

monitor the CMs. At the EM level, all commands to and from the HMI are passed through the DB “HmiInterface”. It
contains the same objects as stored in the DB “ControlNodes” but provides the HMI interface values for these objects.

10.10. EM General

Technical description

The equipment module contains General Functions, checks and logics that is needed in the entire unit. It can include

general releases and system wide functionalities, like air pressure and power handling as well as reactions to events.

Architecture

The architecture of the EM General is derived from the general structure, which was already explained at the beginning of

this chapter General structure. Because there is no sequential process within this EM, there is no FB “Sequence”. The

architecture of FB “CallEquipment” also follows the generally presented one. Within this function block the

implementation of functionality can be seen in the following points:

• Interlink; the EM General always remains linked to the Unit.

• General Releases; Includes information of general fuctions like the feedback of circuit breakers or power supplies are

evaluated.

• Control modules; Different CMs like the stack lights are part of the general functions.

Equipment modules

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 172

Interface function description

The interface of this EM is distributed between DB "ControlNodes" and DB "HmiInterface." The "ControlNodes" database

provides signals regarding the status of the EM, including interlink mode, commands to the EM, and status information.

Additionally, it includes variables representing the status of the control modules (CMs) and linked hardware, such as fuses

or the state of the pressurized air, which are processed within the general releases.

In contrast, the DB "HmiInterface" database contains only EM information but is supplemented by the alarm status of the

EM and the User-Defined Type (UDT), enabling direct EM control through a simulated unit status.

10.11. EM Demo Implementation – Motion Demo

The equipment module “Motion Demo” is an example of how to implement motion tasks.

In motion control systems, the motion program coordinates the movement of mechanical axes through a structured

execution cycle. The motion commands define the desired movement, including positioning, speed, and trajectory. Each

motion cycle processes the current command, updating the target position and managing the axial movements. Different

types of motion logic are integrated into the control sequence: motion-critical logic handles immediate positioning and

sensor interactions, while supporting logic manages fundamental operations like enabling the system, resetting

parameters, or performing homing procedures. This layered approach ensures smooth and precise motion control,

allowing the system to respond to commands and environmental inputs effectively.

The example implementation contains one type of control module with the following two functionalities:

• “LBC_AxisCtrlBasic“ Positioning Axis, to control a Axis for the Positioning Axis.

• “LBC_AxisCrtlBasic“ Synchronous Axis, to control a synchronized Axis for the Positioning Axis.

Technical description

The Implementation of the Motion equipment module follows the same technical implementation as the other demo EMs

by separating the OMAC state model from the EM level. To create modular behavior for the EM, various functionalities

that the equipment can offer are divided into separate jobs. A job could encompass starting (Homing) the EM drives or

executing a subprocess of production. The job and sequence management blocks are implementing this separation.

Architecture

The Motion Demo equipment module provides three basic jobs to fulfill the functionality of the module.

• Homing

- Triggered by the OMAC Starting State

- Positioning and Synchronous Axis are homed

• Production

- Triggered by the OMAC Execute State

- Start both the Positioning and Synchronous Axis handled by the “LBC_AxisCtrlBasic“ block

• Aborting

- Stop the posAxis and syncAxis and then wait until they are stopped.

The Motion Demo equipment module is as already mentioned including two instances of the FB “LBC_AxisCtrlBasic”.
These function blocks are called as usual in the FB “CallEquipment” within the OB “Main” cycle of the equipment module.

Thus, the existing diagnostic and HMI functionalities, which are provided for example by the LBC blocks, continue to be

processed within the application in the standard priority of the program.

Actions that are not critical to performance can be executed as usual in the Sequence of the equipment module, such as

enabling or resetting the axes and the reactions to the global operating mode and states.

Interface function description

The primary interface of the equipment module (EM), its jobs, and the step sequencer is distributed across the DB

"ControlNodes" and DB "HmiInterface". The HMI component contains commands and monitoring signals that can be

Equipment modules

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 173

connected to various operating points. The "HmiInterface" database includes a specific User-Defined Type (UDT) for EM

control, allowing modification of the interlink mode and monitoring of the current alarm status.

Within the "ControlNodes" database, the interface comprises similar elements to the HMI interface, with the addition of

histories of previously executed jobs or steps, along with various enable signals for jobs and sequences. Furthermore, the

control modules (CMs) also store their interface data within these databases.

Figure 10-18: Interface of the Conveyor equipment module.

Equipment modules

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 174

10.12. How to add a new EM in the PLC

The following steps need to be performed when adding an additional equipment module. As an example, another

equipment module is added to the U1_Unit1.

• Go to PLC tags and select the Global PLC tag table. Within the User constants Tab the following steps have to be taken.

Figure 10-19: Unit1 PLC Tag list

• Increase U1_NO_OF_EMs by 1 so that it shows the highest value of the last equipment module within the unit

• Add a new constant with the name of the additional EM and assign the next possible higher number.

• Copy an existing EM of the AFBasic that fits the best to the needs. In this case the folder “11_Em1_Template_LAD” is

copied because a new equipment module with a LAD sequencer is needed. Paste it to the project by right clicking on

the Program blocks folder in the PLC project tree and select paste.

• In the new Em Folder, adjust the name as needed.

Figure 10-20: Properties of the new EM

• Open OB “Main” of the new EM and assign the tag that was generated within the PLC Tags of the unit. The tag is

assigning the EM to the array structure of the unit data.

Equipment modules

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 175

• Change the interface of the CallEquipment block to the corresponding unit signals.

Figure 10-21: OB Main adjustments

• Copy the PLC tag list from the EM you copied, go to the PLC tags folder and then to the Unit folder. In this case we will

copy the Em1 PLC tag list and paste it in the Unit folder. Adjust the name as needed.

• The template EMs contain two jobs, which can be adapted or new jobs added as required. Job numbers are defined

within the PLC tags of the new EM in the User constants. Also adapt the name of the PLC tag table to match the name

of the EM.

Figure 10-22: EM PLC Tags definition of the Jobs within the User constants tab

Equipment modules

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 176

• Every Job then needs a “LAF_SelectJob” instance which are called in the appropriate area of the FB “CallEquipment”.
Adjust the names as needed.

Figure 10-23: Properties of the new OBs

• Change the OB numbers of the OB “Main” and “Startup” according to the OB numbering convention presented in

chapter Startup and cyclic

• Renumber the rest of the blocks by compiling the PLC and select to solve the conflict automatically, as shown in figure

Figure 10-18: Prompt to solve block numbering

• The EM is then ready and can be adjusted to the process that should be fulfilled. Therefore adjust the sequence and

add all control modules that are needed.

• In order to obtain a standardised diagnosis within the EM, the Diagnostic Concept can be followed.

1. Figure 10-18: Prompt to solve block numbering

Equipment modules

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 177

10.13. How to add a new EM in the HMI

1. Go to the Unit in the PLC where the new EM is added and check the array of the new EM. Add it to the textlists in

Unified:

Figure 10-19: EM check in the PLC

Figure 10-20: Adjustment of the textlist in the HMI

2. Add the new screen of the EM to the folder and adjust its properties:

Figure 10-21: New screen for the EM

Equipment modules

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 178

Figure 10-22: Adjustment of the properties of the new screen

3. Adapt the loaded event of the Screen:

Figure 10-23: Loaded events for the new screen

The different system functions inside the loaded event refer to:

• ShowTitle : A generic function to show the title in the header.

• EquipmentModuleLoaded: The scripts that tracks the information for the correct visualization of the EM. We have to

write the Number of the EM and the corresponding Unit.

• Two ChangeScreens: to visualize and set the corresponding navigations.

• SetTagValue for the MainNav: to highlight correctly the icon in the Main Navigation.

4. The SubEM and ThirdEM navigations are automatically adapted in the project. There is no need to adapt anything in

the different sub and third navigation as the project provides an “automatic” adaptation depending on the tags
connected to the PLC. Automation Framework provides up to 25 buttons for the units pre-configured.

NOTE
If 25 or less EMs are used, no additional HMI engineering is required.

If more than 25 EMs are used, the user only needs to “copy-paste” a button and adapt the third
navigation it with the number of the equipment module.

5. Save and compile and the new EM should appear in the different navigations.

Control modules

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 179

11. Control modules
This chapter focuses on the control modules (CMs). It describes the interfaces structures, how the configuration of each

module is handled and the behavior during the manual and automatic control.

The control modules are used to either control the real machine parts or to translate the signals from the machine to the

equipment module.

11.1. Interfaces

The interface of the CMs does follow the PLCOpen, all have at least the input “enable” and the outputs “valid”, “busy”,
“error” and “status”. In the FBs input there are also the commands to execute functionalities and the hardware feedback.

For the project, the control modules of the LBC were used.

More information about the LBC library and the interfaces therein:

https://support.industry.siemens.com/cs/ww/en/view/109792175.

For the ease of use, a special control node version of the LBC is used in the AFBasic. The control node FBs do simplify the

FBs interface by moving the commands inputs to a commands UDT and the outputs to a monitoring UDT. Both,

commands and monitoring UDTs, are within the control node UDT. Additionally, there is also the command configuration

UDT that is used to set the values that will be used for the commands. This simplifies the use of the blocks and a central

data point of the CMs can be used to handle the signals within the equipment module

11.2. Configuration

The control modules in the LBC do have a configuration UDT that is used to configure at least the control modules name

for the HMI and supervision, and whether the supervision alarms should be disabled.

As shown in the chapter Interfaces and blocks, the control modules configuration in an equipment module are stored in

the Config DB. There are two recommended possibilities to configure the DB.

• The first is to set the start value within the DB and shown in the following image:

Figure 11-1 Configuration example: Directly in the DB

https://support.industry.siemens.com/cs/ww/en/view/109792175

Control modules

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 180

• The second option is to set the values during the Startup OB, as shown in the following image:

Figure 11-2 Configuration example: Startup OB

The advantage of using the Startup OB is, that the values can be set dynamically depending on other values.

11.3. Operating modes

The control modules do have a mode for being controlled manually and automatically. Here a manual control is enabled

by the PLC and controlled by the user in the HMI. Using the LBC as an example, the input “enableManualCmds” that allows
the manual control of the CM is only enabled with the variable “#tempManualControlAllowed”, as seen in the next figure:

Figure 11-3: Enable Manual Commands of the LBC block

Control modules

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 181

The variable “#tempManualControlAllowed” is being configured in a network from the CallEquipment FB of any
equipment module, where it will be set/reset depending on whether the unit is in manual mode and whether the unit's

state is a waiting state or not (according to the OMAC Model, manual operation of the CMs will not be allowed in waiting

states, so it will only be permitted in the execute state). This configuration network can be seen in the next figure:

Figure 11-4: Configuration network for enabling/disabling CMs Manual control

When activating the Manual Mode of the LBC blocks both interfaces can control the internal functionality of the block.

The "moduleInterface" is enabled to be controlled via the HMI and PLC internal commands can be used to control the

block via the "controlNode" InOut.

If the "enableManualCommands" Input is not set, the CM is acting in Automatic Control. Therefore, it can only be

controlled via the "controlNode" Input. The "moduleInterface" will not be processed while the automatic mode is

activated.

Motion Control

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 182

12. Motion Control

12.1. General

The S7-1200 G2 motion control (MC) is executed centrally by the Motion-OBs which are located in the folder “Motion”.
The motion control instructions of a technology object (TO) are programmed in the equipment modules that belongs to

the TO from a technology perspective. The following chapters explain the principle of the motion control application cycle

and the use cases of the different Motion-OBs.

System MC OBs: MC_Servo/ MC_Interpolator

When the first TO is added to the S7‑1200 G2 PLC, the OBs “MC_Servo” and “MC_Interpolator” for processing the

functionalities of TOs are created automatically. The functionality of the TOs creates its own execution level according to

the application cycle. These OBs are know-how protected, and the program cannot be edited by the engineer.

• "MC_Servo" performs calculations required to control the speed and position of axes.

• "MC_Interpolator" evaluates motion control instrucations, generates setpoints and monitors inputs.

User MC OBs: MC_PreInterpolator / MC_PreServo / MC_PostServo

The Motion-OBs “MC_PreInterpolator”, “MC_PreServo” and “MC_PostServo” are not know-how protected and part of the

motion control application cycle (see Figure 12-1). These Motion-OBs consider special requirements regarding time-

critical events and should only be added and programmed by the engineer if need:

• “MC_PreServo” should be used to modify actual values before “MC_Servo”. For example, when using an analog

encoder for an axis.

• “MC_PostServo” should be used to modifiy setpoint values after “MC_Servo”. For example, to link setpoints to a

characteristic line of a hydralic axis.

• "MC_PreInterpolator" should be used to adjust inputs for the "MC_Interpolator". For example, to start motion

instructions immediately when a fast reaction or an instant execution for positioning is required.

NOTE Standard motion instructions such as “MC_Power” and “MC_Reset” and none-time-critical movement
instructions should be called in the standard program cycle OB “Main” of the equipment module.

Otherwise, the PLC is loaded with too much unnecessary program in the motion control application
cycle which decreases the overall PLC performance dramatically.

Additionally, only add the Motion OBs in the program which are needed.

Motion Control

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 183

Figure 12-1 illustrates the motion control application cycle and the hierarchy of the different Motion-OBs in detail.

Figure 12-1: Motion control application cycle and call hierarchy of Motion-OBs

Motion Control

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 184

12.2. Motion Folder

The folder “Motion” is very lean. It only contains the necessary Motion-OBs (1). The technology objects are configured

globally in the S7-1200 G2 PLC (2). The motion instructions are programmed and called in the respective equipment

module itself.

Figure 12-2: Contant of folder “Motion” and technology objects

NOTE
In the preconfigured TIA project of the AFBasic, a motion control demo equipment module EM Demo
Implementation – Motion Demo is included. It shows how motion control with a technology object is
programmed in a clear, performance optimized and efficient way.

Motion Control

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 185

12.3. Data exchange between master axis and slave axis in

different equipment modules

Figure 12-3: Program structure and motion control data exchange via motion control application cycle

Figure 12-3 shows the program structure with the use of technology objects in different equipment modules. The

standard motion instructions such as “MC_Power” and “MC_Reset” and none-time-critical movements such as

“MC_MoveAbsolute” or “MC_MoveVelocity” are called inside a block for the control module (e.g. LBC_AxisCtrlBasic as CM 0

in Figure 12-3). Each control module block is assigned to a technology object from type “Axis” (e.g. TO_SpeedAxis,
TO_PositioningAxis, TO_SynchronousAxis or TO_ExternalEncoder).

In gearing or camming applications, these axes need to move in a coordinated way to fulfill the entire movement. Means,

a data exchange for the coupling between these technology objects is required to perform a coordinated movement or to

start the synchronization/desynchronization of master axis and slave axis when certain preconditions are fulfilled. This

data exchange between the technology objects is done by the system of the SIMATIC controller via the “motion control
application cycle” which is provided by the Motion-OBs. The Motion-OBs “MC_Servo” and “MC_Interpolator” are located in
the folder “Motion”.

Motion Control

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 186

But what about the handshake signals to start the synchronization (e.g. “MC_GearIn”) or the desynchronization (e.g.
“MC_GearOut”) of master axis and slave axis? Let’s say the master axis is a TO_PositioningAxis and belongs to equipment
module 1 and the slave axis is a TO_SynchronousAxis and belongs to equipment module 2 (see Figure 12-4). Because the

“LBC_AxisCtrlBasic” block is limited to basic motion instructions, the synchronous motion instructions for the

TO_SynchronousAxis must be called in addition for CM 0 in equipment module 2.

Both axes belong to unit 1. The handshake signals are exchanged via the DB “Unit1Ems” in the folder “Global”. It is
recommended to create UDTs for the handshake signals and declare tags based on these UDTs in the DB “Unit1Ems”.

Figure 12-4: Data exchange for handshake signals between master axis and slave axis in different equipment modules

NOTE
As the handshake signals are highly dependent on the application. The AFBasic does not provide fixed
UDTs for the handshake signals for synchronization/desynchronization between master axis and slave
axis in different equipment modules by default. This chapter explains a general approach on how
these handshake signals can be implemented in a clean and modular way.

Motion Control

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 187

12.4. Technology objects vs. Sina-blocks

Drives can be controlled via technology objects within the PLC or standalone with Sina-blocks. The general difference in

using TOs and Sina-blocks is the location of the control.

When using TOs the position controller and interpolator are in the PLC. The PLC sends control commands as well as speed

setpoint values to the drive. The speed and current control are done by the drive. So, the intelligence is inside the PLC

which offers a greater functionality in terms of gearing, camming and kinematics.

When using Sina-blocks such as “SinaPos”, the position controller and interpolator are in the drive. The Sina-blocks in the

PLC are an interface to send control commands to the drive. The intelligence is inside the drive and limited to

independent axes with basic functionalities like speed control and positioning.

Since both concepts are different, both have different advantages. The following table compares both concepts. The

Advantages are highlighted in green.

 Technology object Sina-block

Functionality • Speed control

• Positioning

• Gearing

• Camming

• Kinematics

• Speed control

• Positioning (with EPOS)

Axis quantity Depends on the CPU.

• Up to 10 positioning axes are
supported with CPU1212 C/FC

(typical 4 positioning axes at 4 ms
motion control application cycle)

• Up to 10 positioning axes are
supported with CPU1214 C/FC

(typical 4 positioning axes at 4 ms
motion control application cycle)

Number of axes only limited to network
limitations.

Performance • Depends on the CPU and the quantity
of axes.

• At least medium impact on CPU
performance.

• Independent on the quantity of axes.

• Lower impact on CPU performance.

SINAMICS drives All All

PROFIdrive telegrams A wide range of telegrams are supported. • Telegram 1 (speed control)

• Telegram 111, 112 and 113
(positioning via EPOS)

PROFINET IRT Required for servo drives Not required

Axis configuration • In TIA Portal

• User friendly configuration

• Wide range of options

• In Startdrive

• User friendly configuration

• Limited options

PLC programming • Variety of PLCopen blocks for MC

• High functionality

• High flexibility

• Limited to “Sina-blocks” and “TO
BasicPosControl” (positioning only)

• Low functionality

• Low flexibility

Usability High Medium

Motion Control

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 188

 Technology object Sina-block

Axis data availability • Directly available via the DB of the TO

• Low complexity

• Low engineering effort

• Via additional blocks which establish
an acyclic communication to write or
read parameters from the drive

• High complexity

• High engineering effort

Diagnostics • CPU and Startdrive trace supported

• Online diagnostics in TIA Portal

• Technology alarms are available in
diagnostic buffer of the CPU, via the
CPU display and webserver and in the
alarm view in the HMI

• Limited to Startdrive trace

• Detailed diagnostics only online via
Startdrive

• Faults and alarms normally only
available online via Startdrive (with
no additional engineering effort)

Simulation • TO integrated simulation

• No additional software and licenses
required

• Additional software and licenses
(SIMIT or DriveSim) required

Openness / Add-Ins Supported Supported

Table 12-1: Comparison of TOs and Sina-blocks

NOTE
In the preconfigured TIA project of the AFBasic, the EM Demo Implementation – Motion Demo shows
motion control with technology objects only. No Sina-blocks are included in this demo.

Process diagnostics

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 189

13. Process diagnostics

13.1. General

The Automation FrameworkBasic offers a diagnostic concept that allows an efficient localization of faults and errors in the

machine application. Within the TIA Portal we distinguish between “System diagnostics” and “Process diagnostics”.

• System diagnostics are hardware-related and described in the chapter Diagnostics.

• Process diagnostic relate to the machine actions and processes. Bit alarms are created within the PLC program, while

their text and the alarm configuration are handled in the HMI.

Within the Automation FrameworkBasic, alarms are configured in both the PLC and the HMI. Each Unit and Equipment

Module will have an alarm DB containing Boolean arrays categorized into errors, warnings, and information messages.

These Booleans will include their trigger logic and a corresponding alarm configuration in the HMI, where parameters

such as alarm text, mode, additional information, etc., are defined.

Subsequent chapters will describe the prerequisites for the HMI and PLC, as well as the process of creating alarms using

the AFBasic concept

NOTE
Thanks to its modular structure, the bit alarming method can be adapted with your own
implementation

13.2. Prerequisites

This chapter explains the necessary settings for the PLC and the HMI. The final settings to meet end-user requirement may

differ.

13.2.1. PLC device settings

Central Alarming Activation

“Central alarm management in the PLC” must be activated in the properties of the PLC device. This enables the Alarm
Server on the PLC. Full text messages are generated in the PLC program and then sent to PLC Alarm Server which pushes

the messages to all connected and available alarm clients for example the TIA Portal engineering, the display on the PLC,

or all connected HMIs.

Figure 13-1: Activation of the central alarm management in the PLC

Process diagnostics

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 190

13.2.2. Multilingual support

The default language setting in the Automation Framework is English, but multilingual is supported. To Display the

messages in the correct language:

• Open the project languages Configuration in the Languages & resources folder.

• Select all the project languages you want to add to the project.

Figure 13-2: Overall project language settings

All languages that are activated in this configuration can now be adapted within the project texts. An additional step is to

assign the project languages to the respective system languages of the PLC and its web server. To achieve this , follow

these steps:

• Select the ‘Multilingual Support’ setting within the properties of the PLC.

Process diagnostics

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 191

• Assign the project languages that should be displayed to the system languages.

Figure 13-3: Project language assignment

All assigned project languages will be loaded onto the PLC. The PLC S7-1200 G2 can support a maximum of three

different project languages at the same time. When the system language is switched, the corresponding project texts are

automatically updated to the selected language.

NOTE Additionally, pay attention to the HMI language settings.

13.2.3. Common alarm class settings

In each TIA Portal project, it is possible to create custom alarm classes in addition to the standard alarm classes

"Acknowledgment" and "No Acknowledgment". For newly defined classes, you can specify names, display names,

priorities and whether acknowledgement is required.

Figure 13-4: AF Alarm Classes configuration

Process diagnostics

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 192

The AFBasic provides the following user defined Alarm classes:

• Alarm_Project

• Alarm_AF

• Warning_AF

• Information_AF

• F-Alarm_AF

• Warning_Project

• CriteriaAnalysis_AF

The Alarm classes can then be assigned to the diagnostic settings described in the following chapters.

13.2.4. System diagnostic settings

The PLC already implements certain diagnostic functions. The previously defined alarm classes can be assigned to the

different categories of system diagnostics. For this purpose, first select the system diagnostic settings area in the

Common data folder (1) and then adjust the assignment (2). Furthermore, is also possible to deactivate the respective

category for the project.

Figure 13-5: System diagnostic settings in the AF

Process diagnostics

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 193

13.2.5. HMI alarm class settings

HMI alarms can be freely configured, and custom alarm classes can be assigned. In the Automation framework, the alarm

classes defined in the Common Alarm Class Settings are used for configuring alarms in the HMI.

Different colors can be set based on the alarm status. In the configured visualization device (1), you can access on the

‘Alarm Classes’ tab (2) the configuration overview (3).

Figure 13-6: HMI alarm setting for the AF

The following default background color settings for the AF are:

• Alarm: red

• Warnings: orange

• Information: blue

• F-Alarms: yellow

Process diagnostics

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 194

13.3. Diagnostic Concept

The holistic alarm concept within the Automation FrameworkBasic provides a standardized and modular approach to create

alarms in a machine. Its primary purpose is to enable operators to identify the cause and location of failures within the

system, ultimately increasing production availability and reducing downtime.

Within the Automation FrameworkBasic, this requires a well-defined structure that integrates the alarm concept into the

framework’s functional architecture. This includes alarming across different layers of the ISA-88 model, from the Control

Module (CM) to the Unit level.

The implemented alarm concept consists of a centralized component for machine alarming at both the Equipment

Module (EM) and Unit levels. This component is based on the “CollectAlarms“ block, which centralizes alarm management

and simplifies the definition of unique bit alarms and messages for the process. Within this block, users categorize and

map all alarms originating from control modules and the processes executed within the EM or Unit. A predefined

structure in the Alarms DB is available to facilitate mapping and categorization. The Alarm DB consists of different

categories such as Error, Warning, Info and Criteria Analysis where each category structure is composed by the trigger

event status and the subcategory which defines the reaction or command to the system.

The following table shows the different alarm and message categories included in the DB structure and their effects on

the process when triggered.

Alarm categories Description

Error An error message is displayed and triggers an automatic response or command to the system
according to the subcategory defined by the user.

Warning A warning message that indicates a potential issue and triggers an automatic response or command
to the system according to the subcategory defined by the user.

Information A notification providing status updates or general system information and triggers an automatic
response or command to the system according to the subcategory defined by the user.

Criteria Analysis A category used for evaluating specific conditions in the system based on predefined criteria and
triggers an automatic response or command to the system according to the subcategory defined by
the user.

Table 13-1 Alarm Categories and their description

These different categories are used to map the different alarms to the machine's process, allowing them to directly

influence the behavior of the machine through the subcategories. The state changes are handled by the

“LAF_SummarizeCommandsToUnit” block. This block sets the Interface signals of the different layers to influence the
LPML Unit Mode State Manager.

Process diagnostics

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 195

The figure below presents the influences of each level on the higher instance by the implementation of the diagnostic

concept. All blocks shown in yellow, or purple, are library objects and do not require any further programming.

Figure 13-7: Architecture of the Diagnostic Concept

13.3.1. Alarm Implementation in the PLC

As previously mentioned, the user defines all EM or Unit alarms within the “CollectAlarm” block. This block contains

predefined sections based on alarm categories. To add an alarm, follow these steps:

• Define a condition that should trigger the alarm and place it in the section of the "CollectAlarm" block according to the

alarm category (1).

• Insert the assignment and connect a free element of the array that is related to the trigger of the alarm category from

the DB “Alarms” (2).

Figure 13-8 Alamr Mapping in FC CollectAlarms

• Open the DB "Alarms" of the correspondig EM or Unit, for our example is DB “Em3_Alarms”, select the assigned
element and add the reaction to the system (3). The reaction is defined by an integer value with the following

reactions to the system. Reactions: -1 = Reaction is defined by the subcategory configured in the ProDiag (non

applicable for 1200-G2, 1 = Stop, 2 = No Reaction, 3 = Abort, 4 = Hold, 5 = Suspend, 6 = Reset, 7 = Start, 8 = Unhold, 9

= Unsuspend, 10 = Clear, 11 = Complete.

Process diagnostics

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 196

Figure 13-9: Subcategories assignment to different alarm events

• Open the DB "Alarms" of the correspondig EM or Unit, for our example is DB “Em3_Alarms”, select the assigned

element and add a comment that is describing the alarm. This step is optional but strongly recommended to identify

which array element is already in use (3).

Figure 13-10 Add comment to the configured element in the Alarm DB

13.3.2. Alarm Implementation in the HMI

Once the alarm has been called in the “CollectAlarms” function and the trigger conditions are set, a new discrete alarm

must be created in the HMI. The HMI discrete alarm consists of an alarm text, alarm class, trigger tag, mode, and other

parameters. To add a discrete alarm, follow these steps:

• Open the HMI Alarms menu inside the HMI folder(1).

• Select the discrete alarms tab (2).

• Click “Add new” to add a new alarm(3).

Process diagnostics

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 197

Figure 13-11 Open discrete alarms configuration

• Go to the trigger tag section and select the tag configured to trigger the alarm (4). In this example, the complete

errorStop array, contained in the Alarms DB, was previously created as a variable in the HMI. Choose the

corresponding tag (5).

Figure 13-12 Trigger tag configuration

Process diagnostics

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 198

• Assign the corresponding alarm class for the configured alarm (6). Use the classes previously configured for the AF

(7).

Figure 13-13 Alarm class selection

• Write the alarm text. This is the information that will be displayed when the alarm is triggered (8). Use meaningful

text that helps identify and resolve the issue, and include the information configured in the PLC tag

referenceDesignatorCombined. This tag can be found within the Config DB of the Unit or EM.

• Assign the Alarm ID, which is a unique identifier for the alarms identification(9)

• Add the alarm ID to the Alarm name (10)

 Figure 13-14 Alarm text , ID and name definition.

NOTE
The alarm ID structure in the Automation FrameworkBasic was defined to ensure a consistent and
unique ID for the alarms. However, the user can create their own format.

It is composed as follows:

Unit No. (1st digit) + Em No.(2nd digit) + Alarm No. (3rd and 4th digits) = Unit ‘1’ + EM ‘3’ + Alarm ‘02’

Process diagnostics

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 199

NOTE
The faceplate “LAF_fpManageAlarms” performs a filtering function to display active errors, warnings,
or information messages at the EM or Unit level. For this to work correctly, the alarm text must include
the combined reference designation

Figure 13-15 Unit or EM Reference Designation

Figure 13-16 LAF_fpManageAlarms filters and displays the active alarms in the EM or Unit

Alarms configuration can also be managed via export and import file functions. Using a spreadsheet for editing allows

users to significantly accelerate the creation or modification of alarms in the HMI.

Figure 13-17 Editing Alarms using a spreadsheet software

Process diagnostics

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 200

13.3.3. Error handling within the LBC Library Blocks

Error Detection

The LBC blocks have internally error detection and analysis so that a status with the current cause is given to the user. By

handling the error analysis, it becomes easier for the user to find the error source and solution.

When an error occurs, an alarm should be generated, and the correct alarm message should be displayed. If an error

occurs (e.g. error in block operation), the error must be given as output, and the status set (e.g. 16#8001). Constants are

assigned to the status code, which contain the specific information about the error (e.g. 16#8001: Error: Wrong operation

of the function block).

Figure 13-18: Status code and constant for error handling in the LBC_AxisCtrlBasic block

NOTE
The LBC normal blocks used in the Automation Framework can also be used in the Automation
Framework Basic version, but they have not been optimized for the G2 or for reduced code memory
consumption, as is the case with the LBC_Basic blocks.

Process diagnostics

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 201

The alarm message is generated using an HMI text list provided for each LBC block, and its specific information about the

status of each control module will be displayed on the screen with the specific faceplate.

Figure 13-19: HMI Text lists for LBC blocks

Simulation

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 202

14. Simulation

14.1. Overview

NOTE

Additional software and license are required for HMI simulation. More details see chapter Hardware
and Software Requirements.

PLC simulation with S7-PLCSIM

S7-PLCSIM offers tools for troubleshooting, validation and verification of the implemented logic in the PLC program.

Simulation tables, allow for the monitoring and modification of PLC inputs and outputs as well as DB tags. Simulation

sequences can be used to simulate an external process interacting with the PLC program. In addition, function blocks can

be programmed to provide the expected behavior of the process within the PLC.

This is a manual approach for testing the logic in the PLC program. The quality of the simulation depends on how accurate

the process is modeled in the simulation sequences of S7-PLCSIM or programmed as function block within the PLC.

Supported simulation features for S7–1200 G2

Feature S7-PLCSIM S7-PLCSIM Advanced

General simulation support

for S7–1200 G2
Yes No

Debugging and monitoring of
PLC program and tags

PLC logic only,

safety and standard program,

basic I/O simulation

Not supported

Validation of user management and
access control (UMAC)

Not supported Not supported

Testing Motion Control applications

with technology objects (TOs)

Update 1 (see link below) or

physical S7–1200 G2 device required

(TO can be tested in simulation mode
without physical drive)

Not supported

Table 14-1: Supported simulation features for S7–1200 G2

NOTE
PLCSIM V20 Update 1 download link: https://support.industry.siemens.com/cs/es/en/view/109963851

https://support.industry.siemens.com/cs/es/en/view/109963851

Simulation

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 203

14.2. PLC and HMI integration of simulation signals

PLC integration

Simulation can be activated in the PLC by setting the respective bits in the data block “Data” in folder “Global” to “TRUE”.
Program code in the PLC, which uses PLC internal simulation program code or should be not active while the simulation is

enabled, must react to these bits:

• Data.general.simulation.withSimit

This bit indicates that a SIMIT simulation is connected. It is not used yet and is intended for future use cases.

• Data.general.simulation.plcInternal

This bit indicates that internal simulation is activated. In this case, the simulation is done with additional program code

in the PLC internally. The start value of this bit is “TRUE” by default.

NOTE
Additional program code, which belongs to simulation, should be programmed in separate FBs and
DBs. This clearly separates the user program and the simulation program code. In addition, the
simulation program code can be deleted easily.

The AFBasic example project does not show any simulation program code. The used technology objects
are set to simulation mode by default. If real hardware is used, the simulation mode must be disabled
manually in the configuration of the technology object.

Simulation

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 204

HMI integration

The PLC internal simulation can by be activated or deactivated by the operator via the “Simulation” button in the

“MachineOverview” screen in the HMI. An active PLC internal simulation is shown with a green status (1).

Figure 14-1: HMI objects in “MachineOverview” screen which belong to simulation

NOTE If the simulation is not required in the HMI, then delete these HMI objects in the “MachineOverview”
screen.

Simulation

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 205

14.3. PLC simulation with PLCSIM

The internal simulation is activated by default in the AFBasic example project. The technology objects are set to simulation

mode by default. Follow the steps below to start a PLC simulation with PLCSIM.

Start S7-PLCSIM.

Create a new PLC instance for the S7-1200 G2 by clicking the “+” icon (1).

Figure 14-2: How to create a new PLC instance in PLCSIM

Start the PLC instance by clicking the “Power” icon (1).

Figure 14-3: How to start a simulated PLC instance in S7-PLCSIM

Simulation

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 206

Go to TIA Portal and download the PLC (1). PLCSIM is preselected as PG/PC interface when a simulated PLC instance is

currently running (2). If any following pop-ups occur, continue with the required actions.

Figure 14-4: How to download the PLC to a simulated PLC instance

Start the simulation of the HMI (1). The WinCC Unified runtime will open automatically in the browser. HMI simulation

may require additional software and license depending on the engineered power tags.

Figure 14-5: How to start the simulation of the HMI application

Simulation

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 207

Go back to S7-PLCSIM and navigate to “SimView” (1). For example, add a sim table (2) from the library to simulate digital

inputs or to monitor digital output.

Figure 14-6: How to add a sim table in S7-PLCSIM

NOTE
S7-PLCSIM offers additional simulation options such as events and sequences (see Figure 14-6). Check
the online help by clicking the “?” icon in the top right corner of S7-PLCSIM to learn more about it.

Add PLC tags manually by entering the physical address (e.g. “Q0.0:P”) into the “Address” field of the sim table or import

the PLC tags from the running simulated PLC instance. For the import, navigate to “Properties” (1). If needed, set a filter

and click on “Load Selected Tags” (2) to add the PLC tags to the sim table.

Figure 14-7: How to add PLC tags to a sim table in S7-PLCSIM

Simulation

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 208

Start the sim table (1) and modify the state of the digital inputs (2) or monitor the state of the digital outputs in the online

view.

Figure 14-8: How to start a sim table in S7-PLCSIM

NOTE
Tipp: Save the PLCSIM workspace to reuse it next time (1) – (2).

User Management

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 209

15. User Management

15.1. General

In the engineering system, you can specify whether you are using local, the user data is stored in the device, or central

user management where the user data is loaded from UMC. By default, the use of the local user management is defined

in TIA Portal.

To be able to manage users in your project, you can perform the following actions:

• Open the editor "Security settings > Users and roles" (1).

• Open the Roles Window (2)

• By selecting one of the users (3), the settings of the user are shown in the bottom screen

• Open the Runtime Rights Window (4), there you can see the Runtime rights of the role (5).

• To assign roles to a user, follow these steps:

• Open the "Users" tab (6).

• Select the user to whom you want to assign roles (7). Note that you cannot use multiple selection.

• Enable the desired roles (9) in the "Assigned roles" section (8).

The procedure described is illustrated by the pictures below:

Figure 15-1: Configurate roles and rights

User Management

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 210

 Figure 15-2: Configurate users and assigned roles

User Management and Access control (UMAC) to protect the Project, PLC, Drives and Scalance

TIA Portal offers comprehensive UMAC for the TIA projects and devices. You can administrate the access to the

engineering. Users can run only functions along their roles.

To active UMAC it is necessary to enable project protection.

WARNING

Project protection cannot be revoked.

With loss of login information from protected projects – the project will be lost.

Use of project protection is advised only with proper login and password information safekeeping.

NOTE
It is recommended to activate UMAC or Project protection earliest in commissioning phase if you need
to make sure that functions or configurations are not changed from anybody anymore, latest after the
handover to the end user.

Please find more information in the TIA Portal online help under “UMAC” or in the manual for
SIMATIC Step7 V19 (chapter 9):

https://support.industry.siemens.com/cs/de/en/view/109826862.

https://support.industry.siemens.com/cs/de/en/view/109826862

User Management

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 211

15.2. Demo Implementation

The AFBasic project includes an example of how various user management/access control can be configured based on

“Local Users”. There exists three different “function rights” in the “User-specific runtime rights” (4), which were created to

set up different access levels for HMI users. In the picture below for the Administrator user(3), the “User-specific runtime

rights” can be found in the tab “Roles” (2), in the “Users and roles” menu (1).

Figure 15-3: User and roles page

To assign function rights to a role or remove assigned function rights, follow these steps:

• Open the "Roles" tab.

• Select a role (1) or create a new one. Please note that you cannot use multi-selection for assignment.

• In the lower area, open the tab with the category from which you want to assign or delete function rights.

• Activate the function rights that you wish to assign to the role (2).

• Deactivate the function rights that are no longer assigned to the role (2).

Figure 15-4: Runtime rights

User Management

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 212

These roles can be renamed, or the list can be extended by another role. To assign roles to a user, follow these steps:

• Open the "Users" tab (1).

• Select the user to whom you want to assign roles (2). Note that you cannot use multiple selection.

• Enable the desired roles in the "Assigned roles" section (3).

Figure 15-5: Assign roles

After the user and the roles are configured, it is necessary to set up the project and screens with the related access levels.

In the AFBasic project, an example has been implemented. The “Setting” screen (2) should be only accessible for the users
with the “Role” “Level1”. Therefore, the “Security” settings (3) need to be configured and “Authorization” must be set to
“Level1”. This configuration led to the behavior, that only users with role “Level1” can access the settings page of the
AFBasic HMI.

Figure 15-6: Assign an Authorization level to a screen object

User Management

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 213

System defined roles:

• Drive Administrator

• Drive Safety Engineer

• Drive Engineer and Service

• Drive Operator

• Drive Guest

• Drive Ext. Role Fieldbus – Anyone can change drive data via the fieldbus protocol if the "Anonymous" user has this role

(with the exception of the settings for Safety Integrated and user and role management). This also applies to the

"Drive Engineer and Service" role.

• Drive Ext. Role SDI Standard/Adv - A user with this role can change drive data via the SDI Standard Panel (with the

exception of the settings for Safety Integrated and user and role management). This also applies to the "Drive

Engineer and Service" role.

• HMI Administrator - User Management, Monitor, Operate, Remote access, Remote access - Monitor only, Openness

Runtime - read and write access, OPC UA - read and write access, Import & export users, Reset UMC Password,

GraphQL access.

• HMI Operator - Monitor, Operate, Remote access - Monitor only.

• HMI Monitor - Monitor, Remote access - Monitor only.

• HMI Monitor Client - WinCC Unified Client Monitor - limited access.

• NET Administrator

• NET Standard

• NET Diagnose

User defined roles:

• Administrator – Level 1 + Level 2 + Level 3

• Maintenance – Level 2 + Level 3

• Operator – Level 3

User group 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Administrator X X X X X X X X X

Maintenance X X X X

Operator X X

Anonymous

Table 15-1: Runtime and user specific rights

Run the demo

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 214

16. Run the demo
The AFBasic is tested using real hardware and is a runnable program. However, some use cases involve a higher number of

devices than are available in the test environment. As a result, some devices and signals are simulated or simply

represented as tags in a data block. The AFBasic project can be executed either with real hardware or through simulation.

For running in simulation mode, PLCSIM and PC Runtime are required.

This approach allows for the evaluation and verification of the program’s functionality in a controlled environment before
final deployment with all physical devices. Simulation ensures that multiple scenarios and configurations can be tested

without needing all the necessary hardware from the beginning. In summary, the AFBasic provides flexibility and

robustness in the testing process, ensuring that both real hardware execution and simulation deliver consistent and

reliable results.

When the user tries to download the compiled program in the PLC (1), a window will pop up asking for login with the

credentials of the user that is authorized to write in the PLC.

Figure 16-1: Download of the compiled program in the PLC

The user type to choose is “Project user” (2). Then the “User name” and “Password” field must be fulfilled. The information

of this credentials can be found within the Security settings in the “User and roles” menu (See Chapter 15 User

Management). For demo purposes, the user must have an administrator role. In this case the login data will be the

following:

Figure 16-2: Login data of user with administrator role

Figure 16-3: The user must fulfill the login data to authorize the connection with the PLC

Run the demo

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 215

From the HMI side, to run the demo, the user must simulate the panel. Once the simulation is running, the HMI is not

operable. The user has to login with the same login data as in the PLC with administrator credentials. For that, by

pressing/clicking in the “User” field, a pop up for sign in will appear (1). Now the user can fulfill the login data (2), then

the HMI will be operable.

Figure 16-4: Non operable HMI. The user has to login with administrator credentials

Figure 16-5: Login in the HMI with administrator credentials

Additional information

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 216

17. Additional information

17.1. Siemens Guidelines

Standardization

The standardization guide shows you how you can modularize your machines and systems. It gives you recommendations

and hints for structured and standardized programming of your automation solutions.

https://support.industry.siemens.com/cs/ww/en/view/109756737

Programming Guideline

The controller generation SIMATIC S7-1500 with its up-to-date system architecture should always be used together with

the TIA Portal. Both are perfectly coordinated and offer efficient options of programming and configuration. The

Programming Guideline for SIMATIC S7 1200 and S7-1500 provides information about innovations, recommendations,

and tips to create a powerful user program with TIA Portal in combination with SIMATIC S7-1200 and S7 1500 controller.

https://support.industry.siemens.com/cs/ww/en/view/81318674

Programming Styleguide

A PLC program should be as readable and structured as possible so that it is feasible for each software developer,

commissioner and maintenance engineer to read and understand the code.

If each developer realized his tasks in its own philosophy, it would be unavoidable that the resulting code is only

interpretable by the respective creator.

With the Programming Styleguide for SIMATIC S7-1200 and S7-1500 Siemens offers some help to create a uniform

program code which is maintainable and reusable even in case of multiple developers working on the same application

program.

https://support.industry.siemens.com/cs/ww/en/view/81318674

Engineering guideline for WinCC Unified

Unified Panel and PC-RT devices offer the latest technologies such as HTML5, JavaScript and scalable vector graphics

(SVGs). In order to use them efficiently, you should follow some engineering recommendations.

The presented implementations can be helpful if you start a new project but also if you have an existing project already

there.

https://support.industry.siemens.com/cs/ww/en/view/109827603

Test Suite Advanced: Checking TIA Portal projects for compliance with a programming style guide

The application example provides a rule set for checking the Styleguide with TIA Portal Test Suite Advanced. A demo

project shows you how the Styleguide check works.

https://support.industry.siemens.com/cs/ww/en/view/109779806

Guideline on Library Handling in TIA Portal

The Guideline on Library Handling in TIA Portal describes the creation of a corporate library using typified library elements

in TIA Portal. Using such types offers some advantages, for example a central update function of all instances, system-

supported version management and change tracking of library elements.

https://support.industry.siemens.com/cs/ww/en/view/109747503

Multiuser Engineering in TIA Portal

With Multiuser Engineering in TIA Portal, it is possible to work with multiple users together and simultaneously on a

project. By processing different objects in parallel within a multiuser project, you can significantly shorten the project

planning and commissioning times.

https://support.industry.siemens.com/cs/ww/en/view/109740141

https://support.industry.siemens.com/cs/ww/en/view/109756737
https://support.industry.siemens.com/cs/ww/en/view/81318674
https://support.industry.siemens.com/cs/ww/en/view/81318674
https://support.industry.siemens.com/cs/ww/en/view/109827603
https://support.industry.siemens.com/cs/ww/en/view/109779806
https://support.industry.siemens.com/cs/ww/en/view/109747503
https://support.industry.siemens.com/cs/ww/en/view/109740141

Additional information

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 217

17.2. TIA Portal Options

TIA Portal Test Suite

The TIA Portal Test Suite enables you to define a rule set which contains several rules against which Function Blocks,

Functions, Organization Blocks, varieties of global DBs/Instance DBs, PLC tags and User Defined Datatypes are validated.

https://support.industry.siemens.com/cs/ww/en/view/109825229

SIMATIC Visualization Architect (SiVArc)

With the SIMATIC Visualization Architect (SiVArc), TIA Portal provides an option to generate the visualization with the aid

of rules which define the assignment between the control program and the visualization. Using this option saves

configuration time and prevents errors, particularly in recurring tasks.

https://support.industry.siemens.com/cs/ww/en/view/109826234

17.3. Software for shared tasks at a glance

The powerful tools offered by SIMATIC software will save you valuable time, allowing you to focus on your core

automation tasks. An overview of the software is shown in the following link:

https://new.siemens.com/global/en/products/automation/industry-software/automation-software/software-for-shared-

tasks.html

TIA Selection Tool

For your application we offer the TIA Selection Tool to support all project planners, beginners and experts alike. No

detailed portfolio knowledge is necessary. TIA Selection Tool is available for download as a free desktop version or a cloud

variant.

http://www.siemens.com/TIA-Selection-Tool

Start directly https://mall.industry.siemens.com/tstcloud/#/Start

Sinetplan

The Siemens Network Planner supports planners of automation systems based on PROFINET and supports the professional

and proactive simulation of the network of a system.

https://support.industry.siemens.com/cs/ww/en/view/109763136

PRONETA

PRONETA Professional supports the operator of automation systems in the automated data acquisition of the components

used as well as the comprehensive diagnostics functions used in the PROFINET network.

Professional https://support.industry.siemens.com/cs/ww/en/view/109781283

Basic https://support.industry.siemens.com/cs/ww/en/view/67460624

SIMATIC Automation Tool

SIMATIC Automation Tool can be used in the field for operating and maintaining the installed devices.

https://support.industry.siemens.com/cs/ww/en/view/109816217

Siemens OPC UA Modeling Editor (SiOME)

With the free "Siemens OPC UA Modellingo Editor" (SiOME) tool, we have created an editor for defining your own OPC UA

Information Models or mapping existing companion specificati ns on your SIMATIC PLC/SINUMERIK. Using this tool, you

can import and edit Information Models as XML files or generate and export individualized models.

https://support.industry.siemens.com/cs/ww/en/view/109755133

https://support.industry.siemens.com/cs/ww/en/view/109825229
https://support.industry.siemens.com/cs/ww/en/view/109826234
https://new.siemens.com/global/en/products/automation/industry-software/automation-software/software-for-shared-tasks.html
https://new.siemens.com/global/en/products/automation/industry-software/automation-software/software-for-shared-tasks.html
http://www.siemens.com/TIA-Selection-Tool
https://mall.industry.siemens.com/tstcloud/#/Start
https://support.industry.siemens.com/cs/ww/en/view/109763136
https://support.industry.siemens.com/cs/ww/en/view/109781283
https://support.industry.siemens.com/cs/ww/en/view/67460624
https://support.industry.siemens.com/cs/ww/en/view/109816217
https://support.industry.siemens.com/cs/ww/en/view/109755133

Additional information

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 218

SIMATIC Controller Profiling

With SIMATIC Controller Profiling, you can analyze and evaluate the runtime behavior of your user program on a SIMATIC

S7-1500 controller from firmware 3.1 in depth and S7-1200 G2 controller. All relevant information can be graphically

displayed and evaluated using Google Chrome.

https://support.industry.siemens.com/cs/document/109750245

https://support.industry.siemens.com/cs/document/109750245

Appendix

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 219

18. Appendix

18.1. Service and Support

SiePortal

The integrated platform for product selection, purchasing and support - and connection of Industry Mall and Online

support. The SiePortal home page replaces the previous home pages of the Industry Mall and the Online Support Portal

(SIOS) and combines them.

• Products & Services

In Products & Services, you can find all our offerings as previously available in Mall Catalog.

• Support

In Support, you can find all information helpful for resolving technical issues with our products.

• mySieportal

mySiePortal collects all your personal data and processes, from your account to current orders, service requests and

more. You can only see the full range of functions here after you have logged in.

Technical Support

The Technical Support of Siemens Industry provides you fast and competent support regarding all technical queries with

numerous tailor-made offers – ranging from basic support to individual support contracts. Please send queries to

Technical Support via Web form: siemens.com/SupportRequest

SITRAIN – Digital Industry Academy

We support you with our globally available training courses for industry with practical experience, innovative learning

methods and a concept that’s tailored to the customer’s specific needs.

For more information on our offered trainings and courses, as well as their locations and dates, refer to our web page:

siemens.com/sitrain

Industry Online Support app

You will receive optimum support wherever you are with the "Siemens Industry Online Support" app. The app is available

for iOS and Android:

http://www.siemens.com/SupportRequest
https://www.siemens.com/sitrain
https://apps.apple.com/us/app/siemens-industry-online-support/id478868966
https://apps.apple.com/us/app/siemens-industry-online-support/id478868966
https://play.google.com/store/apps/details?id=com.siemens.industry.onlinesupport&hl=en
https://play.google.com/store/apps/details?id=com.siemens.industry.onlinesupport&hl=en

Appendix

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 220

18.2. Links to literature

No. Topic

\1\ Siemens Industry Online Support

https://support.industry.siemens.com

\2\ Link to this entry page of this application example

https://support.industry.siemens.com/cs/ww/en/view/109987391

\4\ TIA Portal Add-In Code2Docu for generating documentation

https://support.industry.siemens.com/cs/ww/en/view/109809007

\5\ Siemens Information Model Kit for manufacturing use cases

https://support.industry.siemens.com/cs/ww/en/view/109814835

Table 18-1: Links and literature

https://support.industry.siemens.com/
https://support.industry.siemens.com/cs/ww/en/view/109987391
https://support.industry.siemens.com/cs/ww/en/view/109809007
https://support.industry.siemens.com/cs/ww/en/view/109814835

Appendix

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 221

18.3. Change documentation

Version Date Modification

2.0.0 2025/04/07 First version

2.1.0 2025/05/14 Update:

• Improved performance :

Reduces runtime of the following blocks per PLC cycle by optimizing code and

distributing load to different subsequent PLC cycles. Additionally, improved

behavior, interface and memory consumption.

- FC LAF_PlcDiag

- FC LAF_Checksum

- FB LAF_MemCardDiag

• Improved HMI resource consumption:

Reduced amount of used HMI ressources by optimizing tag connection for the

following screens :

- Settings

- SettingsChecksum

- SettingsDateTime

- SettingsIM

2.1.0 No official version

2.1.1 2025/05/20 Update:

• Fixed bug in LAF_fpDirectEmControl.

Appendix

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 222

2.2.0 2025/6/30 • Added symbols and single letters texts to all configured project languages

• Improved Documentation and added chapter for Manual Operation

• Updated the Sub and Third Navigation structure

• Added the chapter 7.3.7 for the new scripts for the navigation

• Updated the chapter about how to remove a unit on the HMI

• Added the chapter about how to add a new unit on the HMI

• Updated the chapter about how to resize the HMI

• Added the chapter 7.6 for the style setup

• Renamed FB “CallGlobal” to FB “CallGeneral”
• Improved read local PLC time handling

- Changed type of Global.Data.general.localPlcDateAndTime from

LAF_typeGlobalDateTime to DTL to make it compatible with S7-1200 G2. (G2

doesn’t support data type DT).

- In FB CallGeneral, substituded FB LAF_ReadPlcDateAndTime with the system

function RD_LOC_T, as LAF_ReadPlcDateAndTime is not needed any more.

- Changed Global.Settings.setLocalPlcTime.newDateAndTime from DT to DTL to be

compatible with S7-1200 G2.

- In FB CallSettings, substituded FB LAF_SetPlcDateAndTime with the system

function WR_LOC_T, as LAF_SetPlcDateAndTime is not needed any more.

- Added a FC “LAF_ConvertDTL“ to be called before the relevant SICAR blocks to
provide the needed data type “LSicar_typeGlobalDateTime”.

• Text list improvement : Corrected the numbering of the entries in the follwoing text

lists :

- PLC_Checksum_PD

- PLC_ControlOnOff_PD

- SMC_Diag_AlarmWarnInfo_PD

• Information model kit types renamed:

- From LAF_typeMachineInformation to LAF_typeInformation

- From_typeMachineStatus to LAF_typePerformanceIndicators

• Update LBC Library

LAF Library

NEW:

LAF_LinkUnitStatusToSequence / V2.2.0

- First released

LAF_ManCmMultiplexing / V2.2.0

- First released version

LAF_ReadBoolSignals / V2.1.0

- First released version

LAF_ReadWordSignals / V2.1.0

- First released version

UPDATE:

LAF_Checksum / V2.2.1

- Update header info

- Reduced runtime of the block per PLC cycle by distributing the work load to

multiple subsequent PLC cycles.

- Included Alarms, per default ProDiag. If no ProDiag is configured, alarms could

be published via Program Alarms by enabling the respective input of the block.

- Update header info

LAF_ConvertDTL / V2.2.0

- Interface types updated, no functional changes.

LAF_ClearAlarms / V2.2.0

- Header information updated and removed commandsToUnit

- Alarms array data type updated from Bool _LAF_typeEvents_ type.

- Interface data type _LAF_typesEvents_ updated.

LAF_ClockGenerator / V2.0.0

- Block information updated

Appendix

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 223

LAF_CmDummyCn / V2.2.0

- Update block info

- Improved control module behaviour: Added command2, added error when

command1 and command2 are set the same time, added

LAF_ControlEm / V2.2.0

- Creation of inputs to enable HMI and local interfaces to set mode and state,

enModeStateCtrlByHmi and _enModeStateCtrlByLocal_. Fixed bug in assigning

the _unitStatus_ to the local interface.

- Updated interface type _LUC_typeCommands_,_LAF_typeEmControlNode_ and

_LAF_typeEmInterface_. Implemented special functions evaluation from local

and HMI interfaces. Updated evaluation of the enable status of the EM, now is

always enabled independant if the EM is linked or unlinked. Rearranged the

order of _hmiInterface_ and _localInterface_ interfaces.

LAF_ControlLadSequence / V2.2.0

- Updated block info

- Updated header info

- Improved code for the initialization logic. Removed ImmediateStop as implicit

functionality and realized that functionality as a normal job. Added rising edge

detection in the single mode step. Improved general code and simplified

interfaces.

LAF_ControlSclSequence / V2.2.0

- Updated header info

- Improved code for the initialization logic. Removed ImmediateStop

LAF_HmiHeaderMultiUnitManager / V2.0.0

- Block information properties updated

- Updated unit data information from _LAF_typeUnitInterface_ to

_LUC_typeControlInterfaceCompact_.

LAF_HmiHeaderSingleUnitManager / V2.2.0

- Implemented special functions managment between PLC and HMI. Updated unit

data from _LUC_typeMonitoring_ to _LUC_typeControlInterfaceCompact_.

Interface variables _modeRequestButtons_ and _stateCommandButtons_

replaced with _hmiInterface_.

- Interface types updated, no functional changes.

LAF_ManEmConfig / V2.2.0

- Corrected Predefined parameter for "screenData". Changed max areas number

const from 7 to 6.

- Updated block with call to Multiplexing FC and new adapted UDTs

LAF_ManOperationCm / V2.2.0

- Updated header

- Updated UDT for ManOperation

LAF_ManualOperationFaceplate / V2.2.0

- Updated header

- Adapted UDT for manOperation

LAF_ManualOperationInternal / V2.2.0

- Updated header. Corrected Description

- Adapted new UDT for ManOperation

LAF_ManualOperationMain / V2.2.0

- Updated header; Corrected Predefined parameter for "screenData"

- Adapted new UDT version for manOperation

LAF_MemCardDiag / V2.2.1

- Update block info

- Reduced runtime of the block per PLC cycle by distributing the work load to

multiple subsequent PLC cycles.

- Included Alarms, per default ProDiag. If no ProDiag is configured, alarms could

be published via Program Alarms by enabling the respective input of the block.

- Update header info

LAF_PowerOnOff / V2.0.0

- Update block call

Appendix

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 224

Version Date Modification

LAF_ReadCycleLimits / V2.0.0

- Update block info

LAF_SelectJob / V2.2.1

- Locked Output behaviour changed

- Update block info

- Improved the code and the behaviour. Removed the Output _jobStatus_ and

InOut _jobs_ and moved all relevant variables in the InOut _sequence_. The

connection between the FB LAF_SelectJob and the Sequence is realized by the

InOut _sequence_.

- In the code, replaced _sequence.status.manualControlAllowed_ by

sequence.enableManualCtrl. _sequence.status.manualControlAllowed_ is set

by the FB LAF_Status. Sequence and therefore the value change is seen by

LAF_SelectJob one cycle after the value change of

sequence.enableManualCtrl. That caused unwanted

LAF_SetAxisSimulation / V2.2.0

- Block information updated

- Simulation Trigger logic improved

LAF_SetDriveObjectConfig / V2.0.0

- Block information updated

LAF_StatusLadSequence / V2.2.0

- Updated block info

- Updated header info

- Improved general code and simplified interfaces.

LAF_StatusSclSequence / V2.2.0

- Updated block info

- Updated header info

- Improved general code and simplified interfaces.

LAF_SummarizeCommandsToUnit / V2.2.0

- Unification of prodiag and bit alarms. Extention of commands sent to the unit.

Implementation of subcategories evaluation in bit alarms.

- Extention of subcategories according to the commands sent to the unit. There is

a subcategory defined for each posible commnd that can be sent to the unit.

LAF_UpdateJobHistory / V2.2.0

- Header information updated

- Changed history InOut to a [*] to enabled flexible length

LAF_UpdateStepHistory / V2.2.0

- Header information updated

- Changed history InOut to a [*] to enabled flexible length

DELETED:

LAF_HmiHeaderManager / V1.1.0

LAF_ManageAlarms / V1.1.0

LAF_MapUnitStatusToSequence / V1.2.0

LAF_ReadPlcDateAndTime / V1.1.0

LAF_SetPlcDateAndTime / V1.1.0

2.2.1 2025/07/11 Bugfixes

• HMI Third Navigation’s size bug fixed.

• LAF_CopyJsonFiles bug fixed and updated to V 2.1.1

Appendix

Entry ID: 109987391 | V2.2.2 | 10/2025 © Siemens 2025 | 225

Version Date Modification

2.2.2 2025/09/30 Bugfixes

LAF_SelectJob / V2.2.2

- Output "#startPending" (in < V2.2.2 = Output "#readyToStart") now gets updated

correctly

LAF_fpDirectEmControl / V2.2.2

- The event on the buttons write into the “commands” structure now so we are
not bypassing the block via the “status” structure.

CallEquipment U3EM4

- In some networks GlobalDBs where accessed ddirectly in the code, instead of

accessing the GlobalDBs from the interface.

LUC_typeHeaderConfig / V2.2

- Fixed typo in variable names.

ManualOperationLines Screen

- Fixed SubNavigation bug so all manual operation lines appear when changing

from one equipment module to the other through subNavigation.

Updates

LAF_typeJobStatus / V2.2.2

- Changed variable "#readyToStart" to "#startPending" for better understanding

LAF_SelectJob / V2.2.2

- Changed output "#readyToStart" to "#startPending" for better understanding

- It is now possible to restart a singleCyleJob with a new rising edge at input

"#startCondition". So far, another job had to be called first before a

singleCycleJob could be restarted again.

LUC_StatusCollector / V2.2.0

- All commands are now cleared during the first PLC cycle and collected during the

second. This ensures that only commands from fully executed units and

equipment modules are captured, providing up-to-date data for processing.

LAF_typeInterfaceSignalsHmi / V2.1.1

- Changed default values for “screenActive” as TRUE and “selectedPage” as 1.

NEW

LAF_fpUnitSelection / V2.2.0

- Added the faceplate for the Unit selection in a popup: “Select Unit” for better
usability.

Navigation.UnitSelected Script

- Created a script to show in the header the selected units from a SelectUnit

popup, that contains the new LAF_fpUnitSelection faceplate.

Table 18-2: Changelog

